- 1.
Panicker, N.; Kam, T.I.; Wang, H.; et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron. 2022, 110, 2422–2437.
- 2.
Gordon, R.; Albornoz, E.A.; Christie, D.C.; et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 2018, 10, eaah4066,
https://doi.org/10.1126/scitranslmed.aah4066.
- 3.
- 4.
Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. The Lancet. 2021, 397, 2284–2303.
- 5.
Qu, C.; Liu, L.; Xu, Q.Q. Neuroprotective effects of San-Jia-Fu-Mai decoction: Studies on the in vitro and in vivo models of Parkinson’s disease. World J. Tradit. Chin. Med. 2021, 7, 192–200.
- 6.
- 7.
Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009, 8, 382–397.
- 8.
- 9.
Zhou, Q.; Le, M.L.; Yang, Y.Y. Discovery of novel phosphodiesterase-1 inhibitors for curing vascular dementia: Suppression of neuroinflammation by blocking NF-kappaB transcription regulation and activating cAMP/CREB axis. Acta. Pharm. Sin. B. 2023, 13, 1180–1191.
- 10.
Kim, B.-W.; Koppula, S.; Park, S.-Y.; et al. Attenuation of neuroinflammatory responses and behavioral deficits by Ligusticum officinale (Makino) Kitag in stimulated microglia and MPTP-induced mouse model of Parkinson’s disease. J. Ethnopharmacol. 2015, 164, 388–397,
https://doi.org/10.1016/j.jep.2014.11.004.
- 11.
- 12.
Huang, B.X.; Liu, J.X.; Meng, T.Y. Polydatin prevents lipopolysaccharide (LPS)- induced Parkinson’s disease via regulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis. Front. Immunol. 2018, 9, 2527.
- 13.
Chu, C.J.; Ren, H.L.; Xu, N.Y. Eupatorium lindleyanum DC. sesquiterpenes fraction attenuates lipopolysaccharide-induced acute lung injury in mice. J. Ethnopharmacol. 2016, 185, 263–271.
- 14.
Huang, L.; Xu, D.Q.; Chen, Y.Y. Qualitative and quantitative analysis of chemical components in Eupatorium lindleyanum DC. by ultra-performance liquid chromatography-mass spectrometry integrated with anti-inflammatory activity research. J. Sep. Sci. 2021, 44, 3174–3187.
- 15.
Chu, C.; Yao, S.; Chen, J.; et al. Eupatorium lindleyanum DC. flavonoids fraction attenuates lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol. 2016, 39, 23–33,
https://doi.org/10.1016/j.intimp.2016.06.032.
- 16.
Wang, X.; Ma, S.; Lai, F.; et al. Traditional Applications, Phytochemistry, and Pharmacological Activities of Eupatorium lindleyanum DC.: A Comprehensive Review. Front. Pharmacol. 2020, 8, 577124
https://doi.org/10.3389/fphar.2020.577124.
- 17.
Zheng, S.Z.; Zhang, X.W.; Song, X.M.; et al. Epoxymicheliolide directly targets histone H2B to inhibit neuroinflammation via recruiting E3 ligase RNF20. Pharmacol. Res. 2022, 177, 106093,
https://doi.org/10.1016/j.phrs.2022.106093.
- 18.
Kong, X.; Ai, G.; Wang, D.; et al. PDE4 and Epac1 Synergistically Promote Rectal Carcinoma via the cAMP Pathway. Anal. Cell. Pathol. 2019, 2019, 1–5,
https://doi.org/10.1155/2019/7145198.
- 19.
Zhao, M.; Yao, L.; Zhang, X.; et al. Global identification of the cellular targets for a multi-molecule system by a photochemically-induced coupling reaction. Chem. Commun. 2021, 57, 3449–3452,
https://doi.org/10.1039/d1cc00392e.
- 20.
Zhang, X.W.; Feng, N.; Liu, Y.C.; et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. Sci. Adv. 2022, 8, eabo0789,
https://doi.org/10.1126/sciadv.abo0789.
- 21.
Zheng, Z.V.; Cheung, C.Y.; Lyu, H.; et al. Baicalein enhances the effect of low dose Levodopa on the gait deficits and protects dopaminergic neurons in experimental Parkinsonism. J. Clin. Neurosci. 2019, 64, 242–251,
https://doi.org/10.1016/j.jocn.2019.02.005.
- 22.
Wang, X.H.; Lu, G.; Hu, X.; et al. Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson’s disease. BMC Neurosci. 2012, 13, 142–142,
https://doi.org/10.1186/1471-2202-13-142.
- 23.
Li, Y.N.; Xia, Y.; Yin, S.J. Targeting microglial α-synuclein/TLRs/NF- kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front. Immunol. 2021, 12, 719807.
- 24.
Yao, L.; Liao, M.; Wang, J.K.; et al. Gold Nanoparticle-Based Photo-Cross-Linking Strategy for Cellular Target Identification of Supercomplex Molecular Systems. Anal. Chem. 2022, 94, 3180–3187,
https://doi.org/10.1021/acs.analchem.1c04652.
- 25.
- 26.
Hernandez-Baixauli, J.; Abasolo, N.; Palacios-Jordan, H.; et al. Imbalances in TCA, Short Fatty Acids and One-Carbon Metabolisms as Important Features of Homeostatic Disruption Evidenced by a Multi-Omics Integrative Approach of LPS-Induced Chronic Inflammation in Male Wistar Rats. Int. J. Mol. Sci. 2022, 23, 2563,
https://doi.org/10.3390/ijms23052563.
- 27.
Behl, T.; Kumar, S.; Singh, S.; et al. Reviving the mutual impact of SARS-COV-2 and obesity on patients: From morbidity to mortality. Biomed. Pharmacother. 2022, 151, 113178–113178,
https://doi.org/10.1016/j.biopha.2022.113178.
- 28.
- 29.
Chen, Y.H.; Li, Y.P.; Li, C.X. Dexmedetomidine alleviates pain in MPTP-treated mice by activating the AMPK/mTOR/NF-kappaB pathways in astrocytes. Neurosci. Lett. 2022, 791, 136933.
- 30.
Kim, D.Y.; Leem, Y.H.; Park, J.S.; et al. RIPK1 Regulates Microglial Activation in Lipopolysaccharide-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models. Cells 2023, 12, 417,
https://doi.org/10.3390/cells12030417.
- 31.
Han, C.J.; Zheng, J.Y.; Sun, L. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-kappaB pathway. Acta. Pharmacol. Sin. 2019, 40, 1292–1302.
- 32.
Yu, Q.; Zeng, K.W.; Ma, X.L.; et al. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway. Chin. J. Nat. Med. 2017, 15, 751–757,
https://doi.org/10.1016/s1875-5364(17)30106-1.
- 33.
Herrero, M.T.; Estrada, C.; Maatouk, L. Inflammation in Parkinson’s disease: role of glucocorticoids. Front. Neuroanat. 2015, 9, 32.
- 34.
Gan, P.; Xia, Q.F.; Hang, G.H. Knockdown of cathepsin D protects dopaminergic neurons against neuroinflammation-mediated neurotoxicity through inhibition of NF-κB signalling pathway in Parkinson’s disease model. Clin. Exp. Pharmacol. Physiol. 2019, 46, 337–349.
- 35.
Chen, Y.H.; Jiang, M.J.; Li, L. DL-3-n-butylphthalide reduces microglial activation in lipopolysaccharide-induced Parkinson’s disease model mice. Mol. Med. Rep. 2018, 17, 3884–3890.
- 36.
Zhang, Y.; Dong, F.; Cao, Z.; et al. Eupalinolide A induces autophagy via the ROS/ERK signaling pathway in hepatocellular carcinoma cells in vitro and in vivo. Int. J. Oncol. 2022, 61, 1–16,
https://doi.org/10.3892/ijo.2022.5421.
- 37.
Wang, F.; Zhong, H.H.; Fang, S.Q. Potential anti-inflammatory sesquiterpene lactones from Eupatorium lindleyanum. Planta. Med. 2018, 84, 123–128.
- 38.
- 39.
- 40.
Zhang, J.; Hu, K.; Di, L.; et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv. Drug Deliv. Rev. 2021, 178, 113964,
https://doi.org/10.1016/j.addr.2021.113964.
- 41.
- 42.
Yang, Y.; Wu, C. The linkage of gut microbiota and the property theory of traditional Chinese medicine (TCM): Cold-natured and sweet-flavored TCMs as an example. J. Ethnopharmacol. 2023, 306, 116167,
https://doi.org/10.1016/j.jep.2023.116167.
- 43.
- 44.
- 45.
Ding, Y.J.; Peng, Y.M.; Wu, H.L. The protective roles of liraglutide on Kawasaki disease via AMPK/mTOR/NF-kappaB pathway. Int. Immunopharmacol. 2023, 117, 110028.
- 46.
Fu, Y.; Yang, J.; Wang, X.; et al. Herbal Compounds Play a Role in Neuroprotection through the Inhibition of Microglial Activation. J. Immunol. Res. 2018, 2018, 1–8,
https://doi.org/10.1155/2018/9348046.
- 47.
Qiao, J.; Wang, C.; Chen, Y.; et al. Herbal/Natural Compounds Resist Hallmarks of Brain Aging: From Molecular Mechanisms to Therapeutic Strategies. Antioxidants 2023, 12, 920,
https://doi.org/10.3390/antiox12040920.