- 1.
Anderson, A.J.; Jackson, T.D.; Stroud, D.A.; et al. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biol. 2019, 9, 190126,
https://doi.org/10.1098/rsob.190126.
- 2.
- 3.
- 4.
- 5.
Yuan, M.; Gong, M.; He, J.; et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling. Redox Biol. 2022, 52, 102289,
https://doi.org/10.1016/j.redox.2022.102289.
- 6.
Filadi, R.; Leal, N.S.; Schreiner, B.; et al. TOM70 Sustains Cell Bioenergetics by Promoting IP3R3-Mediated ER to Mitochondria Ca(2+) Transfer. Curr Biol, 2018. 28, 369–382.
https://doi.org/10.1016/j.cub.2017.12.047 - 7.
- 8.
Matsuzaki, H.; Fujimoto, T.; Tanaka, M.; et al. Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux. Biochem. Biophys. Res. Commun. 2013, 433, 322–326,
https://doi.org/10.1016/j.bbrc.2013.02.099.
- 9.
Thoudam, T.; Ha, C.-M.; Leem, J.; et al. PDK4 Augments ER–Mitochondria Contact to Dampen Skeletal Muscle Insulin Signaling During Obesity. Diabetes 2018, 68, 571–586,
https://doi.org/10.2337/db18-0363.
- 10.
Ilacqua, N.; Sánchez-Álvarez, M.; Bachmann, M.; et al. Protein Localization at Mitochondria-ER Contact Sites in Basal and Stress Conditions. Front. Cell Dev. Biol. 2017, 5, 107,
https://doi.org/10.3389/fcell.2017.00107.
- 11.
Han, S.; Zhao, F.; Hsia, J.; et al. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J. Cell Sci. 2021, 134, jcs253443,
https://doi.org/10.1242/jcs.253443.
- 12.
Naón, D.; Hernández-Alvarez, M.I.; Shinjo, S.; et al. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. Science 2023, 380, eadh9351,
https://doi.org/10.1126/science.adh9351.
- 13.
Area-Gomez, E.; de Groof, A.J.C.; Boldogh, I.; et al. Presenilins Are Enriched in Endoplasmic Reticulum Membranes Associated with Mitochondria. Am. J. Pathol. 2009, 175, 1810–1816, doi:10.2353/ajpath.2009.090219.
- 14.
Contino, S.; Porporato, P.E.; Bird, M.; et al. Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology. Front. Physiol. 2017, 8, 796,
https://doi.org/10.3389/fphys.2017.00796.
- 15.
Filadi, R.; Greotti, E.; Turacchio, G.; et al. Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. Cell Rep. 2016, 15, 2226–2238,
https://doi.org/10.1016/j.celrep.2016.05.013.
- 16.
- 17.
Yamano, K.; Kinefuchi, H.; Kojima, W. Mitochondrial lipid dynamics regulated by MITOL-mediated ubiquitination. J. Biochem. 2023, 175, 217–219,
https://doi.org/10.1093/jb/mvad117.
- 18.
Wang, H.; Ju, D.; Kho, D.-H.; et al. The ubiquitin specific protease USP34 protects the ubiquitin ligase gp78 from proteasomal degradation. Biochem. Biophys. Res. Commun. 2019, 509, 348–353,
https://doi.org/10.1016/j.bbrc.2018.12.141.
- 19.
De Vos, K.J.; Morotz, G.M.; Stoica, R.; et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet, 2012, 21, 1299–1311.
- 20.
Mórotz, G.M.; Martín-Guerrero, S.M.; Markovinovic, A.; et al. The PTPIP51 coiled-coil domain is important in VAPB binding, formation of ER-mitochondria contacts and IP3 receptor delivery of Ca(2+) to mitochondria. Front Cell Dev Biol. 2022. 10, 920947.
- 21.
Iwasawa, R.; Mahul-Mellier, A.-L.; Datler, C.; et al. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 2010, 30, 556–568,
https://doi.org/10.1038/emboj.2010.346.
- 22.
- 23.
Guillén-Samander, A.; Leonzino, M.; Hanna, IVM.G.; et al. VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J. Cell Biol. 2021, 220, e202010004,
https://doi.org/10.1083/jcb.202010004 - 24.
Hung, V.; Lam, S.S.; Udeshi, N.D., et al. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. Elife 2017, 6, e24463,
https://doi.org/10.7554/eLife.24463 - 25.
Doghman‐Bouguerra, M.; Granatiero, V.; Sbiera, S.; et al. FATE 1 antagonizes calcium‐ and drug‐induced apoptosis by uncoupling ER and mitochondria. Embo Rep. 2016, 17, 1264–1280,
https://doi.org/10.15252/embr.201541504.
- 26.
- 27.
Ilamathi, H.S.; Benhammouda, S.; Lounas, A.; et al. Contact sites between endoplasmic reticulum sheets and mitochondria regulate mitochondrial DNA replication and segregation. iScience 2023, 26, 107180,
https://doi.org/10.1016/j.isci.2023.107180.
- 28.
Arguello, T.; Peralta, S.; Antonicka, H.; et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 2021, 37, 110139–110139,
https://doi.org/10.1016/j.celrep.2021.110139.
- 29.
Wu, W.; Lin, C.; Wu, K.; et al. FUNDC 1 regulates mitochondrial dynamics at the ER –mitochondrial contact site under hypoxic conditions. EMBO J. 2016, 35, 1368–1384,
https://doi.org/10.15252/embj.201593102.
- 30.
Harada, T.; Sada, R.; Osugi, Y.; et al. Palmitoylated CKAP4 regulates mitochondrial functions through an interaction with VDAC2 at ER-mitochondria contact sites. J. Cell Sci. 2020, 133, jcs249045,
https://doi.org/10.1242/jcs.249045.
- 31.
- 32.
Zhang, L.; Yan, F.; Li, L.; et al. New focuses on roles of communications between endoplasmic reticulum and mitochondria in identification of biomarkers and targets. Clin. Transl. Med. 2021, 11, e626,
https://doi.org/10.1002/ctm2.626.
- 33.
- 34.
Pichla, M.; Sneyers, F.; Stopa, K.B.; et al. Dynamic control of mitochondria-associated membranes by kinases and phosphatases in health and disease. Cell. Mol. Life Sci. 2021, 78, 6541–6556,
https://doi.org/10.1007/s00018-021-03920-9.
- 35.
Morgado-Cáceres, P.; Liabeuf, G.; Calle, X.; et al. The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells. Front Cell Dev Biol, 2022, 10, 946678,
https://doi.org/10.3389/fcell.2022.946678 - 36.
- 37.
- 38.
- 39.
Li, Z.; Cao, Y.; Pei, H.; et al. The contribution of mitochondria-associated endoplasmic reticulum membranes (MAMs) dysfunction in Alzheimer’s disease and the potential countermeasure. Front. Neurosci. 2023, 17, 1158204,
https://doi.org/10.3389/fnins.2023.1158204.
- 40.
Wilson, E.L.; Metzakopian, E. ER-mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ 2021, 28, 1804–1821.
- 41.
Dentoni, G.; Castro-Aldrete, L.; Naia, L.; et al. The Potential of Small Molecules to Modulate the Mitochondria–Endoplasmic Reticulum Interplay in Alzheimer’s Disease. Front. Cell Dev. Biol. 2022, 10, 920228,
https://doi.org/10.3389/fcell.2022.920228.
- 42.
Jagtap, Y.A.; Kumar, P.; Kinger, S.; et al. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol. 2023, 11, 1146564.
https://doi.org/10.3389/fcell.2023.1146564 - 43.
Area-Gomez, E.; Schon, E.A. Towards a Unitary Hypothesis of Alzheimer’s Disease Pathogenesis. J. Alzheimer’s Dis. 2024, 98, 1243‒1275,
https://doi.org/10.3233/jad-231318.
- 44.
- 45.
Han, J.; Park, H.; Maharana, C.; et al. Alzheimer’s disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Theranostics 2021, 11, 8855–8873.
- 46.
Barodia, S.K.; Prabhakaran, K.; Karunakaran, S.; et al. Editorial: Mitochondria and Endoplasmic Reticulum Dysfunction in Parkinson’s Disease. Front Neurosci, 2019, 13, 1171,
https://doi.org/10.3389/fnins.2019.01171.
- 47.
- 48.
Guillén-Samander, A.; De Camilli, P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harb Perspect Biol. 2023, 15, a041257.
- 49.
Prasuhn, J.; Davis, R.L.; Kumar, K.R. Targeting Mitochondrial Impairment in Parkinson’s Disease: Challenges and Opportunities. Front Cell Dev Biol. 2020, 8, 615461,
https://doi.org/10.3389/fcell.2020.615461.
- 50.
Maity, S.; Komal, P.; Kumar, V.; et al. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington’s Disease. Int. J. Mol. Sci. 2022, 23, 780,
https://doi.org/10.3390/ijms23020780.
- 51.
- 52.
Cherubini, M.; Lopez-Molina, L.; Gines, S. Mitochondrial fission in Huntington’s disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca(2+) efflux and Reactive Oxygen Species (ROS) homeostasis. Neurobiol Dis. 2020, 136, 104741,
https://doi.org/10.1016/j.nbd.2020.104741.
- 53.
Bernal, A.F.; Mota, N.; Pamplona, R.; et al. Hakuna MAM-Tata: Investigating the role of mitochondrial-associated membranes in ALS. Biochim. et Biophys. Acta (BBA) - Mol. Basis Dis. 2023, 1869, 166716,
https://doi.org/10.1016/j.bbadis.2023.166716.
- 54.
Martín-Guerrero, S.M.; Markovinovic, A.; Mórotz, G.M.; et al. Targeting ER-Mitochondria Signaling as a Therapeutic Target for Frontotemporal Dementia and Related Amyotrophic Lateral Sclerosis. Front. Cell Dev. Biol. 2022, 10, 915931,
https://doi.org/10.3389/fcell.2022.915931.
- 55.
Chen, J.; Bassot, A.; Giuliani, F.; et al. Amyotrophic Lateral Sclerosis (ALS): Stressed by Dysfunctional Mitochondria-Endoplasmic Reticulum Contacts (MERCs). Cells 2021, 10, 1789,
https://doi.org/10.3390/cells10071789.
- 56.
Hartopp, N.; Markovinovic, A.; Miller, C.C.J.; et al., Insight into endoplasmic reticulum-mitochondria contacts in human amyotrophic lateral sclerosis. Neural. Regen. Res. 2024, 19, 1407‒1408.
- 57.
Wilson, E.L.; Yu, Y.; Leal, N.S.; et al. Genome-wide CRISPR/Cas9 screen shows that loss of GET4 increases mitochondria-endoplasmic reticulum contact sites and is neuroprotective. Cell Death Dis. 2024, 15, 1–16,
https://doi.org/10.1038/s41419-024-06568-y.
- 58.
Yang, S.; Zhou, R.; Zhang, C.; et al. Mitochondria-Associated Endoplasmic Reticulum Membranes in the Pathogenesis of Type 2 Diabetes Mellitus. Front. Cell Dev. Biol. 2020, 8, 571554,
https://doi.org/10.3389/fcell.2020.571554.
- 59.
Cheng, H.; Gang, X.; He, G.; et al. The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance. Front. Endocrinol. 2020, 11, 592129
https://doi.org/10.3389/fendo.2020.592129.
- 60.
Thivolet, C.; Vial, G.; Cassel, R.; et al. Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes. PLOS ONE 2017, 12, e0182027–e0182027,
https://doi.org/10.1371/journal.pone.0182027.
- 61.
- 62.
Dingreville, F.; Panthu, B.; Thivolet, C.; et al. Differential Effect of Glucose on ER-Mitochondria Ca(2+) Exchange Participates in Insulin Secretion and Glucotoxicity-Mediated Dysfunction of beta-Cells. Diabetes, 2019, 68, 1778–1794.
- 63.
- 64.
Xia, W.; Veeragandham, P.; Cao, Y.; et al. Obesity causes mitochondrial fragmentation and dysfunction in white adipocytes due to RalA activation. Nat. Metab. 2024, 6, 273–289,
https://doi.org/10.1038/s42255-024-00978-0.
- 65.
Beaulant, A.; Dia, M.; Pillot, B.; et al. Endoplasmic reticulum-mitochondria miscommunication is an early and causal trigger of hepatic insulin resistance and steatosis. J. Hepatol. 2022, 77, 710–722,
https://doi.org/10.1016/j.jhep.2022.03.017.
- 66.
de Almeida, M.E.; Ørtenblad, N.; Petersen, M.H.; et al. Acute exercise increases the contact between lipid droplets and mitochondria independently of obesity and type 2 diabetes. J. Physiol, 2023, 601, 1797–1815.
- 67.
Wang, J.; He, W.; Tsai, P.-J.; et al. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Heal. Dis. 2020, 19, 1–19,
https://doi.org/10.1186/s12944-020-01210-0.
- 68.
Barbier-Torres, L.; Fortner, K.A.; Iruzubieta, P.; et al. Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation. Nat. Commun. 2020, 11, 1–15,
https://doi.org/10.1038/s41467-020-16991-2.
- 69.
Dabravolski, S.A.; Bezsonov, E.E.; Orekhov, A.N. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed. Pharmacother. 2021, 142, 112041,
https://doi.org/10.1016/j.biopha.2021.112041.
- 70.
Jin, C.; Felli, E.; Lange, N.F.; et al. Endoplasmic Reticulum and Mitochondria Contacts Correlate with the Presence and Severity of NASH in Humans. Int. J. Mol. Sci. 2022, 23, 8348,
https://doi.org/10.3390/ijms23158348.
- 71.
- 72.
Hernández-Alvarez, M.I.; Sebastián, D.; Vives, S.; et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell 2019, 177, 881–895,
https://doi.org/10.1016/j.cell.2019.04.010.
- 73.
Forte, M.; Schirone, L.; Ameri, P.; et al. The role of mitochondrial dynamics in cardiovascular diseases. Br. J. Pharmacol. 2020, 178, 2060–2076,
https://doi.org/10.1111/bph.15068.
- 74.
- 75.
Li, J.; Zhang, D.; Brundel, B.J.; et al. Imbalance of ER and Mitochondria Interactions: Prelude to Cardiac Ageing and Disease? Cells 2019, 8, 1617,
https://doi.org/10.3390/cells8121617.
- 76.
- 77.
- 78.
Maamoun, H.; Abdelsalam, S.S.; Zeidan, A.; et al. Endoplasmic Reticulum Stress: A Critical Molecular Driver of Endothelial Dysfunction and Cardiovascular Disturbances Associated with Diabetes. Int. J. Mol. Sci. 2019, 20, 1658,
https://doi.org/10.3390/ijms20071658.
- 79.
Peruzzo, R.; Costa, R.; Bachmann, M.; et al. Mitochondrial Metabolism, Contact Sites and Cellular Calcium Signaling: Implications for Tumorigenesis. Cancers 2020, 12, 2574,
https://doi.org/10.3390/cancers12092574.
- 80.
Bustos, G.; Ahumada-Castro, U.; Silva-Pavez, E.; et al. The ER-mitochondria Ca(2+) signaling in cancer progression: Fueling the monster. Int. Rev. Cell Mol. Biol, 2021, 363, 49–121.
- 81.
Reyes-Castellanos, G.; Hadi, N.A.; Carrier, A. Autophagy Contributes to Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Tumors. Cells 2022, 11, 426,
https://doi.org/10.3390/cells11030426.
- 82.
Themistocleous, S.; Christodoulou, P.; Kyriakou, T.-C.; et al. Key genes expressed in mitochondria-endoplasmic reticulum contact sites in cancer (Review). Oncol. Rep. 2023, 49, 1–14,
https://doi.org/10.3892/or.2023.8514.
- 83.
Nobili, A.; Krashia, P.; D’Amelio, M. Cisd2: a promising new target in Alzheimer’s disease(dagger). J. Pathol. 2020, 251, 113–116.
- 84.
Yeh, C.-H.; Chou, Y.-J.; Kao, C.-H.; et al. Mitochondria and Calcium Homeostasis: Cisd2 as a Big Player in Cardiac Ageing. Int. J. Mol. Sci. 2020, 21, 9238,
https://doi.org/10.3390/ijms21239238.
- 85.
Li, S.X.; Li, J.; Dong, L.W.; et al. Cytoskeleton-Associated Protein 4, a Promising Biomarker for Tumor Diagnosis and Therapy. Fron. Mole. Biosci., 2021, 7, 552056.
- 86.
Simoes, I.C.M.; Morciano, G.; Lebiedzinska-Arciszewska, M.; et al. The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochim. et Biophys. Acta (BBA) - Mol. Basis Dis. 2020, 1866, 165834,
https://doi.org/10.1016/j.bbadis.2020.165834.
- 87.
Grespi, F.; Vianello, C.; Cagnin, S.; et al. The Interplay of Microtubules with Mitochondria–ER Contact Sites (MERCs) in Glioblastoma. Biomolecules 2022, 12, 567,
https://doi.org/10.3390/biom12040567.
- 88.
Sammeta, S.S.; Banarase, T.A.; Rahangdale, S.R.; et al. Molecular understanding of ER-MT communication dysfunction during neurodegeneration. Mitochondrion 2023, 72, 59–71,
https://doi.org/10.1016/j.mito.2023.07.005.
- 89.
Hajimahdi, Z. Small Molecules as Protein-Protein Interaction Inhibitors. Iran, J. Pharm. Res, 2016, 15, 1–2.
- 90.
Hartopp, N.; Lau, D.H.W.; Martin-Guerrero, S.M.; et al. Disruption of the VAPB-PTPIP51 ER-mitochondria tethering proteins in post-mortem human amyotrophic lateral sclerosis. Front. Cell Dev. Biol. 2022, 10, 950767,
https://doi.org/10.3389/fcell.2022.950767.
- 91.
Li, M.; Zhang, Y.; Yu, G.; et al. Mitochondria‐associated endoplasmic reticulum membranes tethering protein VAPB‐PTPIP51 protects against ischemic stroke through inhibiting the activation of autophagy. CNS Neurosci. Ther. 2024, 30, e14707,
https://doi.org/10.1111/cns.14707.
- 92.
- 93.
Wu, H.; Wang, Y.; Li, W.; et al. Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome. Autophagy 2019, 15, 1882–1898,
https://doi.org/10.1080/15548627.2019.1596482.
- 94.
Zhang, T.; Kho, D.H.; Wang, Y.; et al. Gp78, an E3 Ubiquitin Ligase Acts as a Gatekeeper Suppressing Nonalcoholic Steatohepatitis (NASH) and Liver Cancer. PLOS ONE 2015, 10, e0118448,
https://doi.org/10.1371/journal.pone.0118448.
- 95.
Zhao, H.; Song, G.; Zhu, H.; et al. Pharmacological Effects of Urolithin A and Its Role in Muscle Health and Performance: Current Knowledge and Prospects. Nutrients 2023, 15, 4441,
https://doi.org/10.3390/nu15204441.
- 96.
Mazarakis, N.; Snibson, K.; Licciardi, P.V.; et al. The potential use of L-sulforaphane for the treatment of chronic inflammatory diseases: A review of the clinical evidence. Clin. Nutr. 2020, 39, 664–675,
https://doi.org/10.1016/j.clnu.2019.03.022.
- 97.
Rong, Y.P.; Bultynck, G.; Aromolaran, A.S.; et al., The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc. Natl. Acad. Sci. 2009, 106, 14397‒14402.
- 98.
Janer, A.; Morris, J.L.; Krols, M.; et al. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci. Alliance 2023, 7, e202302335,
https://doi.org/10.26508/lsa.202302335.
- 99.
Huo, Z.; Gu, J.; He, T. Apelin-13 reduces high glucose-induced mitochondrial dysfunction in cochlear hair cells by inhibiting endoplasmic reticulum stress. Exp. Ther. Med. 2024, 27, 1–8,
https://doi.org/10.3892/etm.2024.12515.
- 100.
Su, Z.D.Z.; Li, C.Q.; Wang, H.W.; et al. Inhibition of DRP1-dependent mitochondrial fission by Mdivi-1 alleviates atherosclerosis through the modulation of M1 polarization. J. Transl. Med. 2023, 21, 427.
- 101.
Li, F.; Aljahdali, I.A.M.; Ling, X. Molecular Glues: Capable Protein-Binding Small Molecules That Can Change Protein–Protein Interactions and Interactomes for the Potential Treatment of Human Cancer and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 6206,
https://doi.org/10.3390/ijms23116206.
- 102.
Thai, P.N.; Seidlmayer, L.K.; Miller, C.; et al. Mitochondrial Quality Control in Aging and Heart Failure: Influence of Ketone Bodies and Mitofusin-Stabilizing Peptides. Front. Physiol. 2019, 10, 382,
https://doi.org/10.3389/fphys.2019.00382.
- 103.
Oh, J.G.; Kim, J.; Jang, S.P.; et al. Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J. Mol. Cell. Cardiol. 2013, 56, 63–71.
- 104.
- 105.
Xia, Y.; Zhang, Y.; Sun, Y.; et al. CCDC127 regulates lipid droplet homeostasis by enhancing mitochondria-ER contacts. Biochem. Biophys. Res. Commun. 2023, 683, 149116,
https://doi.org/10.1016/j.bbrc.2023.10.048.
- 106.
- 107.
Lin, H.; Guo, X.; Liu, J.; et al. Ethanol‐Induced Hepatic Ferroptosis Is Mediated by PERK‐Dependent MAMs Formation: Preventive Role of Quercetin. Mol. Nutr. Food Res. 2024, 68, e2300343,
https://doi.org/10.1002/mnfr.202300343.
- 108.
Kerkhofs, M.; Bultynck, G.; Vervliet, T.; et al. Therapeutic implications of novel peptides targeting ER–mitochondria Ca2+-flux systems. Drug Discov. Today 2019, 24, 1092–1103,
https://doi.org/10.1016/j.drudis.2019.03.020.
- 109.
- 110.
Zakyrjanova, G.F.; Gilmutdinov, A.; Tsentsevitsky, A.N.; et al. Olesoxime, a cholesterol-like neuroprotectant restrains synaptic vesicle exocytosis in the mice motor nerve terminals: Possible role of VDACs. Biochim. et Biophys. Acta (BBA) - Mol. Cell Biol. Lipids 2020, 1865, 158739,
https://doi.org/10.1016/j.bbalip.2020.158739.
- 111.
Chen, W.; Shen, Z.; Dong, W.; et al. Polygonatum sibiricum polysaccharide ameliorates skeletal muscle aging via mitochondria-associated membrane-mediated calcium homeostasis regulation. Phytomedicine 2024, 129, 155567.
- 112.
- 113.
- 114.
Huang, J.; Wan, L.; Lu, H.; et al. High expression of active ATF6 aggravates endoplasmic reticulum stress-induced vascular endothelial cell apoptosis through the mitochondrial apoptotic pathway. Mol. Med. Rep. 2018, 17, 6483–6489,
https://doi.org/10.3892/mmr.2018.8658.
- 115.
Burkewitz, K.; Feng, G.; Dutta, S.; et al. Atf-6 Regulates Lifespan through ER-Mitochondrial Calcium Homeostasis. Cell Rep. 2020, 32, 108125.
- 116.
Rossi, A.; Galla, L.; Gomiero, C.; et al. Calcium Signaling and Mitochondrial Function in Presenilin 2 Knock-Out Mice: Looking for Any Loss-of-Function Phenotype Related to Alzheimer’s Disease. Cells 2021, 10, 204,
https://doi.org/10.3390/cells10020204.
- 117.
Thoudam, T.; Chanda, D.; Lee, J.Y.; et al. Enhanced Ca2+-channeling complex formation at the ER-mitochondria interface underlies the pathogenesis of alcohol-associated liver disease. Nat. Commun. 2023, 14, 1–18,
https://doi.org/10.1038/s41467-023-37214-4.
- 118.
Giorgi, C.; Bonora, M.; Sorrentino, G.; et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl. Acad. Sci. 2015, 112, 1779–1784,
https://doi.org/10.1073/pnas.1410723112.
- 119.
Naia, L.; Pinho, C.M.; Dentoni, G.; et al. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol. 2021, 19, 1–21,
https://doi.org/10.1186/s12915-021-00979-5.
- 120.
- 121.
- 122.
Rakhmatullina, D.; Mazina, A.; Ponomareva, A.; et al. Mdivi-1 Induced Mitochondrial Fusion as a Potential Mechanism to Enhance Stress Tolerance in Wheat. Life 2022, 12, 1386,
https://doi.org/10.3390/life12091386.
- 123.
- 124.
- 125.
de Marañón, A.M.; Díaz-Pozo, P.; Canet, F.; et al. Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox. Biol. 2022, 53, 102342.
- 126.
Distelmaier, F.; Visch, H.-J.; Smeitink, J.A.M.; et al. The antioxidant Trolox restores mitochondrial membrane potential and Ca2+-stimulated ATP production in human complex I deficiency. J. Mol. Med. 2009, 87, 515–522,
https://doi.org/10.1007/s00109-009-0452-5.
- 127.
- 128.
Rout, S.K.; Priya, V.; Setia, A.; et al. Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomed Pharmacother 2022, 153, 113451.
- 129.
- 130.
Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; et al. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9, e17488.
- 131.
Aoyama-Ishiwatari, S.; Hirabayashi, Y. Endoplasmic Reticulum–Mitochondria Contact Sites—Emerging Intracellular Signaling Hubs. Front. Cell Dev. Biol. 2021, 9, 653828,
https://doi.org/10.3389/fcell.2021.653828.
- 132.
Dhanasekaran, S.; Venugopal, D.; Al-Dayan, N.; et al. Emerging insights into mitochondria-specific targeting and drug delivering strategies: Recent milestones and therapeutic implications. Saudi, J. Biol. Sci. 2020, 27, 3581–3592,
https://doi.org/10.1016/j.sjbs.2020.07.030.
- 133.
- 134.
Milane, L.S.; Dolare, S.; Ren, G.; et al. Combination Organelle Mitochondrial Endoplasmic Reticulum Therapy (COMET) for Multidrug Resistant Breast Cancer. J. Control. Release 2023, 363, 435–451,
https://doi.org/10.1016/j.jconrel.2023.09.023.
- 135.
Wang, W.; Zhang, Y.; Wang, Z.; et al. A Native Drug-Free Macromolecular Therapeutic to Trigger Mutual Reinforcing of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction for Cancer Treatment. ACS Nano 2023, 17, 11023–11038,
https://doi.org/10.1021/acsnano.3c03450.
- 136.