- 1.
Banerjee, S.; Biehl, A.; Gadina, M. S.; et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs 2017, 77, 521–546.
- 2.
Hu, X.; Li, J.; Fu, M.; et al. The JAK/STAT signaling oathway: From bench to clinic. Signal. Transduct. Target. Ther. 2021, 6, 402.
- 3.
O’Shea, J.J.; Holland, S.M.L.; Staudt, M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 2013, 368, 161–170.
- 4.
Alunno, A.; Padjen, I.; Fanouriakis, A.; et al. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: Integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cell 2019, 8, 898.
- 5.
Ihle, J.N.; Witthuhn, B.A.; Quelle, F.W.; et al. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem. Sci. 1994, 19, 222–227.
- 6.
Goll, G.L.; Kvien, T.K. New-generation JAK inhibitors: How selective can they be? Lancet 2018, 391, 2477–2478.
- 7.
Schwartz, D.M.; Kanno, Y.; Villarino, A.; et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2017, 16, 843–862.
- 8.
Phillips, R.L.; Wang, Y.; Cheon, H.; et al. The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022, 185, 3857–3876.
- 9.
Gadina, M.; Johnson, C.; Schwartz, D.; et al. Translational and clinical adences in JAK-STAT biology: The present and future of jakinib. J. Leukoc. Biol. 2018, 104, 499‒514.
- 10.
Krolewaki, J.J.; Lee, R.; Eddy, R.; et al. Identification and chromosomal mapping of new human tyrosine kinease genes. Oncogene 1990, 5, 277‒282.
- 11.
Wilks, A.F.; Harpur, A.G.; Kurban, R.R.; et al. Two novel protein-tyrosine kinases, each with a second phaophatransferase-related catalytic domain, define a new class of protein kinase. Mol. Cell. Biol. 1991, 11, 2057–65.
- 12.
Harpur, A.G.; Andres, A.C.; Zimiecki, A.; et al. JAK2, a third menber of the JAK family of protein tyrosine kinases. Oncogene 1992, 7, 1347‒1353.
- 13.
Rane, S.G.; Reddy, E.P. JAK3, a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 1994, 9, 2415–23.
- 14.
Yamaoka, K.; Saharinen, P.; Pesu, M.; et al. The Janus kinases (Jaks). Genome Biol. 2004, 5, 253.
- 15.
RoskoskiJr. , R. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol. Res. 2022, 183, 106362.
- 16.
Liosi, M.E.; Looplito, J.A.; Henry, S.P.; et al. Insights on JAK2 modulation by potent, selective, and cellpermeable pseudokinase-domain ligands. J. Med. Chem. 2022, 65, 8380–8400.
- 17.
Xue, C.; Yao, Q.; Gu, X.; et al. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal. Transduct. Target. Ther. 2023, 8, 204.
- 18.
Castelo-Soccio, L.; Kim, H.; Gadina, M.; et al. Protein kinases: Drug targets for immunological disorders. Nat. Rev. Immunol. 2023, 23, 787‒806.
- 19.
Basquiera, A.L.; Soria, N.W.; Ryser, R.; et al. Clinical significance of V617F mutation of the JAK2 gene in patients with chronic myeloproliferative disorders. Hematology 2009, 14, 323‒330.
- 20.
Shao, S.; Chen, C.J.; Shi, G.N.; et al. JAK inhibition ameliorated EAE by blocking GM-CSF-driven inflammatory signature of monocytes. Acta Pharm. Sin. B 2023, 13, 4185‒4201.
- 21.
RoskoskiJr. , R. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases, Pharmacol. Res. 2016, 111, 784‒803.
- 22.
Chen, C.; Lu, D.; Sun, T.; et al. JAK3 inhibitors for the treatment of inflammatory and autoimmune diseases: A patent review (2016-present). Expert Opin. Ther. Pat. 2022, 32, 225‒242.
- 23.
Chen, C.; Yin, Y.; Shi, G.N.; et al. A highly selective JAK3 inhibitor is developed for treating rheumatoid arthritis by suppressing γc cytokines related JAK-STAT signal. Sci. Adv. 2022, 8, eabo4363.
- 24.
Schindler, C.; Levy, D.E.; Decker, T. JAK-STAT signaling: From interferons to cytokines, J. Biol. Chem. 2007, 282, 20059‒20063.
- 25.
He, X.; Chen, X.; Zhang, H.; et al. Selective Tyk2 inhibitors as potential therapeutic agents: A patent review (2015‒2018). Expert Opin. Ther. Pat. 2019, 29, 137‒149.
- 26.
Wrobleski, S.T.; Moslin, R.; Lin, S.; et al. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: Discovery of the allosteric inhibitor BMS-986165. J. Med. Chem. 2019, 62, 8973–8995.
- 27.
O’Shea, J.J.; Gadina, M.; Schreiber, R.D. Cytokine signaling in 2002: New surprises in the Jak/Stat pathway. Cell 2002, 109, S121–S131.
- 28.
Ihle, J.N.; Kerr, I.M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 1995, 11, 69–74.
- 29.
Yoshimura, A.; Ohkubo, T.; Kiguchi, T.; et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 1995, 14, 2816–2826.
- 30.
Irie-Sasaki, J.; Sasaki, T.; Matsumoto, W.; et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001, 409, 349–354.
- 31.
Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus kinases in immune cell signaling. Immunol Rev. 2009, 228, 273–287.
- 32.
Tefferi, A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, and IKZFIDH1. Leukemia 2010, 24, 1128–1138
- 33.
Allen Reish, H.E.; Standaert, D.G. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J. Parkinson’s Dis. 2015, 5, 1–19.
- 34.
Harel, S.; Higgins, C.A.; Cerise, J.E.; et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci. Adv. 2015, 1, e1500973.
- 35.
Legrand, J.M.D.; Roy, E.; Ellis, J.J.; et al. STAT5 activation in the dermal papilla is important for hair follicle growth phase induction. J. Investig. Dermatol. 2016, 136, 1781–1791.
- 36.
Angelini, J.; Talotta, R.; Roncato, R.; et al. JAK-Inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future. Biomolecules 2020, 10, 1002.
- 37.
Leroy, E.; Constantinescu, S.N. Rethinking JAK2 inhibition: Towards novel strategies of more specific and versatile Janus kinase inhibition. Leukemia 2017, 31, 1023–1038.
- 38.
Vainchenker, W.; Leroy, E.; Gilles, L.; et al. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Research 2018, 7, 82.
- 39.
Quintás-Cardama, A.; Vaddi, K.; Liu, P.; et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: Therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010, 115, 3109–3117.
- 40.
Raedler, L.A. Jakafi (Ruxolitinib): First FDA-approved medication for the treatment of patients with polycythemia vera. Am. Health Drug Benefits 2015, 8, 75–79.
- 41.
Fogelman, D.; Cubillo, A.; García-Alfonso, P.; et al. Randomized, double-blind, phase two study of ruxolitinib plus regorafenib in patients with relapsed/refractory metastatic colorectal cancer. Cancer Med. 2018, 7, 5382–5393.
- 42.
Jagasia, M.; Perale, M.A.; Schroeder, M.A.; et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): A multicenter, open-label phase 2 trial. Blood 2020, 135, 1739–1749.
- 43.
Cervantes, F.; Pereira, A. Does ruxolitinib prolong the survival of patients with myelofibrosis? Blood 2017, 129, 832–837.
- 44.
Verstovsek, S.; Mesa, R.A.; Gotlib, J.; et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 2012, 366, 799–807.
- 45.
Papp, K.; Szepietowski, J.C.; Kircik, L.; et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. J. Am. Acad. Dermatol. 2021, 85, 863–872.
- 46.
Rosmarin, D.; Passeron, T.; Pandya, A.G.; et al. Two Phase 3, Randomized, Controlled Trials of Ruxolitinib Cream for Vitiligo. N. Engl. J. Med. 2022, 387, 1445–1455.
- 47.
Flanagan, M.E.; Blumenkopf, T.A.; Brissette, W.H.; et al. Discovery of CP-690,550: A potent and selective janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection, J. Med. Chem. 2010, 53, 8468–8484.
- 48.
Fleischmann, R.; Kremer, J.; Cush, J.; et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 2012, 367, 495–507.
- 49.
Van Vollenhoven, R.F.; Fleischmann, R.; Cohen, S.; et al. Tofacitinib or Adalimumab versus Placebo in Rheumatoid Arthritis. N. Engl. J. Med. 2012, 367, 508–519.
- 50.
Gladman, D.; Rigby, W.; Azevedo, V.F.; et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N. Engl. J. Med. 2017, 377, 1525–1536.
- 51.
Mease, P.; Hall, S.; FitzGerald, O.; et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 2017, 377, 1537–1550.
- 52.
Sandborn, W.J.; Ghosh, S.; Panes, J.; et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 2012, 367, 616–624.
- 53.
Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; et al. A Comprehensive overview of globally approved JAK inhibitors. Pharmaceutics 2022, 14, 1001.
- 54.
Markham, A. Baricitinib: First global approval. Drugs 2017, 77, 697–704.
- 55.
Coricello, A.; Mesiti, F.; Lupia, A.; et al. Inside perspective of the synthetic and computational toolbox of JAK inhibitors: Recent updates. Molecules 2020, 25, 3321.
- 56.
Fridman, J.S.; Scherle, P.A.; Collins, R.; et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: Preclinical characterization of INCB028050. J. Immunol. 2010, 184, 5298–5307.
- 57.
Melo, A.; Carrascosa, J.M.; Torres, T. Baricitinib for the treatment of atopic dermatitis. J. Dermatol. Treat. 2022, 35, 2404–2413.
- 58.
King, B.; Ko, J.; Forman, S.; et al. Efficacy and safety of the oral Janus kinase inhibitor baricitinib in the treatment of adults with alopecia areata: Phase 2 results from a randomized controlled study. J. Am. Acad. Dermatol. 2021, 85, 847–853.
- 59.
Bretz, F.; Posch, M.; Glimm, E.; et al. Graphical approaches for multiple comparison procedures using weighted Bonferroni, Simes, or parametric tests. Biometrical J. 2011, 53, 894–8913.
- 60.
Freitas, E.; Guttman-Yassky, E.; Torres, T. Barcitinib for the treatment for alopecia areata. Drugs 2023, 83, 761–770.
- 61.
Markham, A.; Keam, S.J. Peficitinib: First global approval. Drugs 2019, 79, 887–891.
- 62.
Hamaguchi, H.; Amano, Y.; Moritomo, A.; et al. Discovery and structural characterization of peficitinib (ASP015K) as a novel and potent JAK inhibitor, Bioorg. Med. Chem. 2018, 26, 4971–4983.
- 63.
Dhillon, S. Delgocitinib: First approval. Drugs 2020, 80, 609–615.
- 64.
Tanimoto, Y.; Ogawa, C.; Oki, Y.; et al. Pharmacological properties of JTE-052: A novel potent JAK inhibitor that suppresses various inflammatory responses in vitro and in vivo. Inflamm. Res. 2015, 64, 41–51.
- 65.
Lamb, Y.N. Pacritinib: First approval. Drugs 2022, 82, 831–838.
- 66.
Keam, S.J. Momelotinib: First approval. Drugs 2023, 83, 1709–1715.
- 67.
Parmentier, J.M.; Voss, J.; Graff, C.; et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2018, 2, 23.
- 68.
Dhillon, S.; Keam, S.J. Filgotinib: First approval. Drugs 2020, 80, 1987–1997.
- 69.
Van Rompaey, L.; Galien, R.; van der Aar, E.M.; et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J. Immunol. 2013, 191, 3568–3577.
- 70.
Deeks, E.D.; Duggan, S. Abrocitinib: First approval. Drugs 2021, 81, 2149–2157.
- 71.
Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; et al. Identification of N-{cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfonamide (PF-04965842): A selective JAK1 clinical candidate for the treatment of autoimmune diseases. J. Med. Chem, 2018, 61, 1130–1152.
- 72.
Blair, H.A. Fedratinib: First approval. Drugs 2019, 79, 1719–1725.
- 73.
Wernig, G.; Kharas, M.G.; Okabe, R.; et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008, 13, 311–320.
- 74.
Blair, H.A. Ritlecitinib: First approval. Drugs 2023, 83, 1315–1321.
- 75.
Xu, H.; Jesson, M.I.; Seneviratne, U.I.; et al. PF-06651600, a Dual JAK3/TEC Family Kinase Inhibitor. ACS Chem. Biol. 2019, 14, 1235–1242.
- 76.
Hoy, S.M. Deucravacitinib: First approval. Drugs 2022, 82, 1671–1679.
- 77.
Le, A.M.; Puig, L.; Torres, T. Deucravacitinib for the treatment of psoriatic disease. Am. J. Clin. Dermatol. 2022, 23, 813–822.
- 78.
Jensen, L.T.; Attfield, K.E.; Feldmann, M.; et al. Allosteric TYK2 inhibition: Redefining autoimmune disease therapy beyond JAK1-3 inhibitors. eBioMedcine 2023, 97, 104840.
- 79.
Armstrong, A.W.; Gooderham, M.; Warren, R.B.; et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J. Am. Acad. Dermatol. 2023, 88, 29–39.
- 80.
Strober, B.; Thaci, D.; Sofen, H.; et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 program for evaluation of TYK2 inhibitor psoriasis second trial. J. Am. Acad. Dermatol. 2023, 88, 40–51.
- 81.
- 82.
- 83.
Sivaraman, P.; Cohen, S.B. Malignancy and Janus kinase inhibition. Rheum. Dis. Clin. North. Am. 2017, 43, 79–93.
- 84.
Curtis, J.R.; Xie, F.; Yun, H.; et al. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1843–1847.
- 85.
Crowley, E.L.; Nezamololama, N.; Papp, K.; et al. Abrocitinib for the treatment of atopic dermatitis. Expert Rev. Clin. Immunol. 2020, 16, 955–962.
- 86.
Miyatake, D.; Shibata, T.; Toyoshima, J.; et al. Pharmacokinetics and safety of a single oral dose of peficitinib (ASP015K) in Japanese subjects with normal and impaired hepatic function. Clin. Pharmacol. Drug Dev. 2020, 9, 699–708.
- 87.
Pardanani, A.; Harrison, C.; Cortes, J.E.; et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015, 1, 643–651.