- 1.
Sowter, H.M.; Raval, R.R.; Moore, J.W.; et al. Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003, 63, 6130–6134.
- 2.
Tekin, D.; Dursun, A.D.; Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol. Sin. 2010, 31, 1085–1094.
- 3.
Masson, N.; Ratcliffe, P.J. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J. Cell Sci. 2003, 116, 3041–3049.
- 4.
Semenza, G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol. 2014, 76, 39–56.
- 5.
Ockaili, R.; Natarajan, R.; Salloum, F.; et al. HIF-1 activation attenuates postischemic myocardial injury: Role for heme oxygenase-1 in modulating microvascular chemokine generation. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H542–H548.
- 6.
Cai, Z.; Manalo, D.J.; Wei, G.; et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 2003, 108, 79–85.
- 7.
Natarajan, R.; Salloum, F.N.; Fisher, B.J.; et al. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ. Res. 2006, 98, 133–140.
- 8.
Eckle, T.; Kohler, D.; Lehmann, R.; et al. Hypoxia-inducible factor-1 is central to cardioprotection: A new paradigm for ischemic preconditioning. Circulation 2008, 118, 166–175.
- 9.
Sarkar, K.; Cai, Z.; Gupta, R.; et al. Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. Proc. Natl. Acad. Sci. USA 2012, 109, 10504–10509.
- 10.
Iyer, N.V.; Kotch, L.E.; Agani, F.; et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12, 149–162.
- 11.
Lee, S.H.; Wolf, P.L.; Escudero, R.; et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med. 2000, 342, 626–633.
- 12.
Cerychova, R.; Pavlinkova, G. HIF-1, Metabolism, and Diabetes in the Embryonic and Adult Heart. Front. Endocrinol. 2018, 9, 460.
- 13.
Zhang, Z.; Yao, L.; Yang, J.; et al. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol. Med. Rep. 2018, 18, 3547–3554.
- 14.
Masoud, G.N.; Li W. HIF-1alpha pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin. B 2015, 5, 378–389.
- 15.
Catrina, S.B.; Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021, 64, 709–716.
- 16.
Dodd, M.S.; Sousa Fialho, M.D.L.; Montes Aparicio, C.N.; et al. Fatty Acids Prevent Hypoxia-Inducible Factor-1alpha Signaling Through Decreased Succinate in Diabetes. JACC. Basic to translational science 2018, 3, 485–498.
- 17.
Marfella, R.; Esposito, K.; Nappo, F.; et al. Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes. Diabetes 2004, 53, 2383–2391.
- 18.
Loor, G.; Schumacker, P.T. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell. Death Differ. 2008, 15, 686–690.
- 19.
Zhao, X.; Liu, S.; Wang, X.; et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front. Endocrinol 2022, 13, 1032268.
- 20.
Sousa Fialho, M.D.L.; Abd Jamil, A.H.; Stannard, G.A.; et al. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 831–843.
- 21.
Maxwell, P.H.; Eckardt, K.U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol 2016, 12, 157–168.
- 22.
Sousa Fialho, M.D.L.; Purnama, U.; Dennis, K.; et al. Activation of HIF1alpha Rescues the Hypoxic Response and Reverses Metabolic Dysfunction in the Diabetic Heart. Diabetes 2021, 70, 2518–2531.
- 23.
Yeh, T.L.; Leissing, T.M.; Abboud, M.I.; et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 2017, 8, 7651–7668.
- 24.
Lei, L.; Mason, S.; Liu, D.; et al. Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Mol. Cell. Biol. 2008, 28, 3790–3803.
- 25.
Loboda, A.; Jazwa, A.; Grochot-Przeczek, A.; et al. Heme oxygenase-1 and the vascular bed: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Sign. 2008, 10, 1767–1812.
- 26.
Maines, M.D.; Trakshel, G.M.; Kutty, R.K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. The J. Biol. Chem. 1986, 261, 411–419.
- 27.
Iyer, S.; Woo, J.; Cornejo, M.C.; et al. Characterization and biological significance of immunosuppressive peptide D2702.75-84(E→V) binding protein. Isolation of heme oxygenase-1. J. Biol. Chem. 1998, 273, 2692–2697.
- 28.
Drummond, H.A.; Mitchell, Z.L.; Abraham, N.G.; et al. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants 2019, 8, 181.
- 29.
Abraham, N.G.; Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev. 2008, 60, 79–127.
- 30.
Lee, P.J.; Jiang, B.H.; Chin, B.Y.; et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 1997, 272, 5375–5381.
- 31.
Medina, M.V.; Sapochnik, D.; Garcia Sola, M.; Coso O. Regulation of the Expression of Heme Oxygenase-1: Signal Transduction, Gene Promoter Activation, and Beyond. Antioxid. Redox Sign. 2020, 32, 1033–1044.
- 32.
Kawashima, A.; Oda, Y.; Yachie, A.; et al. Heme oxygenase-1 deficiency: The first autopsy case. Hum. Pathol 2002, 33, 125–130.
- 33.
Poss, K.D.; Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. USA 1997, 94, 10925–10930.
- 34.
Peterson, S.J.; Frishman, W.H.; Abraham, N.G. Targeting heme oxygenase: Therapeutic implications for diseases of the cardiovascular system. Cardiol. Rev. 2009, 17, 99–111.
- 35.
Bellner, L.; Lebovics, N.B.; Rubinstein, R.; et al. Heme Oxygenase-1 Upregulation: A Novel Approach in the Treatment of Cardiovascular Disease. Antioxid. Redox Sign. 2020, 32, 1045–1060.
- 36.
Otterbein, L.E.; Foresti, R.; Motterlini R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ. Res. 2016, 118, 1940–1959.
- 37.
Shan, H.; Li, T.; Zhang, L.; et al. Heme oxygenase-1 prevents heart against myocardial infarction by attenuating ischemic injury-induced cardiomyocytes senescence. EBioMedicine 2019, 39, 59–68.
- 38.
Evans, J.M.; Navarro, S.; Doki, T.; et al. Gene transfer of heme oxygenase-1 using an adeno-associated virus serotype 6 vector prolongs cardiac allograft survival. J. Transplant. 2012, 2012, 740653.
- 39.
Hinkel, R.; Lange, P.; Petersen, B.; et al. Heme Oxygenase-1 Gene Therapy Provides Cardioprotection Via Control of Post-Ischemic Inflammation: An Experimental Study in a Pre-Clinical Pig Model. J. Am. Coll. Cardiol. 2015, 66, 154–165.
- 40.
Ohta, K.; Yachie, A.; Fujimoto, K.; et al. Tubular injury as a cardinal pathologic feature in human heme oxygenase-1 deficiency. Am. J. Kidney Dis. 2000, 35, 863–870.
- 41.
Csonka, C.; Varga, E.; Kovacs, P.; et al. Heme oxygenase and cardiac function in ischemic/reperfused rat hearts. Free Radic. Biol. Med. 1999, 27, 119–126.
- 42.
Raju, V.S.; Maines, M.D. Renal ischemia/reperfusion up-regulates heme oxygenase-1 (HSP32) expression and increases cGMP in rat heart. J. Pharmacol. Exp. Ther 1996, 277, 1814–1822.
- 43.
Zhao, Y.; Zhang, L.; Qiao, Y.; et al. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. PLoS ONE 2013, 8, e75927.
- 44.
Choi, Y.K.; Kim, Y.M. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J. Mol. Sci. 2022, 23, 7041.
- 45.
Heitmeier, M.R.; Payne, M.A.; Weinheimer, C.; et al. Metabolic and Cardiac Adaptation to Chronic Pharmacologic Blockade of Facilitative Glucose Transport in Murine Dilated Cardiomyopathy and Myocardial Ischemia. Sci. Rep. 2018, 8, 6475.
- 46.
Fajardo, V.M.; Feng, I.; Chen, B.Y.; et al. GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Sci. Rep. 2021, 11, 8669.
- 47.
Slot, J.W.; Geuze, H.J.; Gigengack, S.; et al. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc. Natl. Acad. Sci. USA 1991, 88, 7815–7819.
- 48.
Olson, A.L. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN Mol. Biol 2012, 2012, 856987.
- 49.
Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev. 2016, 8, 5–9.
- 50.
Wang, F.; Liang, G.Y.; Liu, D.X.; et al. Effect of Si-RNA-silenced HIF-1alpha gene on myocardial ischemia-reperfusion-induced insulin resistance. Int J. Clin. Exp. Med. 2015, 8, 15514–15520.
- 51.
Santalucia, T.; Moreno, H.; Palacin, M.; et al. A novel functional co-operation between MyoD, MEF2 and TRalpha1 is sufficient for the induction of GLUT4 gene transcription. J. Mol. Biol 2001, 314, 195–204.
- 52.
Sun, D.; Nguyen, N.; DeGrado, T.R.; et al. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994, 89, 793–798.
- 53.
Tian, R.; Abel, E.D. Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 2001, 103, 2961–2966.
- 54.
Egert, S.; Nguyen, N.; Brosius F.C., 3rd; et al. Effects of wortmannin on insulin- and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc. Res. 1997, 35, 283–293.
- 55.
Marsin, A.S.; Bertrand, L.; Rider, M.H.; et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 2000, 10, 1247–1255.
- 56.
Hue, L.; Beauloye, C.; Marsin, A.S.; et al. Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J. Mol. Cell. Cardiol. 2002, 34, 1091–1097.
- 57.
Maria, Z.; Campolo, A.R.; Lacombe, V.A. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS ONE 2015, 10, e0146033.
- 58.
Dutka, D.P.; Pitt, M.; Pagano, D.; et al. Myocardial glucose transport and utilization in patients with type 2 diabetes mellitus, left ventricular dysfunction, and coronary artery disease. J. Am. Coll. Cardiol. 2006, 48, 2225–2231.
- 59.
Shao, D.; Tian R. Glucose Transporters in Cardiac Metabolism and Hypertrophy. Compr. Physiol. 2015, 6, 331–351.
- 60.
Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; et al. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119.
- 61.
Davargaon, R.S.; Sambe, A.D.; Muthangi V.V.S. Trolox prevents high glucose-induced apoptosis in rat myocardial H9c2 cells by regulating GLUT-4 and antioxidant defense mechanism. IUBMB Life 2019, 71, 1876–1895.
- 62.
Nanduri, J.; Peng, Y.J.; Yuan, G.; et al. Hypoxia-inducible factors and hypertension: Lessons from sleep apnea syndrome. J. Mol. Med. 2015, 93, 473–480.
- 63.
Peng, Y.J.; Yuan, G.; Ramakrishnan, D.; et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J. Physiol. 2006, 577, 705–716.
- 64.
Prabhakar, N.R.; Semenza, G.L. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Arch. 2016, 468, 71–75.
- 65.
Pullamsetti, S.S.; Mamazhakypov, A.; Weissmann, N.; et al. Hypoxia-inducible factor signaling in pulmonary hypertension. J. Clin. Investig. 2020, 130, 5638–5651.
- 66.
Jiang, Y.; Zhou, Y.; Peng, G.; et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1alpha and TRPC channels. Int. J. Biochem. Cell. Biol. 2018, 104, 161–170.
- 67.
Kurosawa, R.; Satoh, K.; Kikuchi, N.; et al. Identification of Celastramycin as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension. Circ. Res. 2019, 125, 309–327.
- 68.
Huh, J.W.; Kim, S.Y.; Lee, J.H.; et al. YC-1 attenuates hypoxia-induced pulmonary arterial hypertension in mice. Pulm. Pharmacol. Ther. 2011, 24, 638–646.
- 69.
Hosick, P.A.; Stec, D.E. Heme oxygenase, a novel target for the treatment of hypertension and obesity? Am. J. Physiol. Regul. Intgr. Comp. Physiol. 2012, 302, R207–R214.
- 70.
Li VoltiG.; Sacerdoti, D.; Di Giacomo, C.; et al. Natural heme oxygenase-1 inducers in hepatobiliary function. World J. Gastroenterol. 2008, 14, 6122–6132.
- 71.
Yao, Y.; Wang, W.; Li, M.; et al. Curcumin Exerts its Anti-hypertensive Effect by Down-regulating the AT1 Receptor in Vascular Smooth Muscle Cells. Sci. Rep. 2016, 6, 25579.
- 72.
Osei, K. Insulin resistance and systemic hypertension. Am. J. Cardiol. 1999, 84, 33J–36J.
- 73.
Fang, P.; He, B.; Yu, M.; et al. Treatment with celastrol protects against obesity through suppression of galanin-induced fat intake and activation of PGC-1alpha/GLUT4 axis-mediated glucose consumption. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1341–1350.
- 74.
Thomas, C.; Leleu, D.; Masson D. Cholesterol and HIF-1alpha: Dangerous Liaisons in Atherosclerosis. Front. Immunol. 2022, 13, 868958.
- 75.
Parathath, S.; Mick, S.L.; Feig, J.E.; et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ. Res. 2011, 109, 1141–1152.
- 76.
Gao, L.; Chen, Q.; Zhou, X.; et al. The role of hypoxia-inducible factor 1 in atherosclerosis. J. Clin. Pathol. 2012, 65, 872–876.
- 77.
Aarup, A.; Pedersen, T.X.; Junker, N.; et al. Hypoxia-Inducible Factor-1alpha Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1782–1790.
- 78.
Wang, P.; Zeng, G.; Yan, Y.; et al. Disruption of adipocyte HIF-1alpha improves atherosclerosis through the inhibition of ceramide generation. Acta Pharm. Sin. B 2022, 12, 1899–1912.
- 79.
Chaudhari, S.M.; Sluimer, J.C.; Koch, M.; et al. Deficiency of HIF1alpha in Antigen-Presenting Cells Aggravates Atherosclerosis and Type 1 T-Helper Cell Responses in Mice. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2316–2325.
- 80.
Rahtu-Korpela, L.; Maatta, J.; Dimova, E.Y.; et al. Hypoxia-Inducible Factor Prolyl 4-Hydroxylase-2 Inhibition Protects Against Development of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 608–617.
- 81.
Araujo, J.A.; Zhang, M.; Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front. Pharmacol. 2012, 3, 119.
- 82.
Yachie, A.; Niida, Y.; Wada, T.; et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 1999, 103, 129–135.
- 83.
Alonso-Pineiro, J.A.; Gonzalez-Rovira, A.; Sanchez-Gomar, I.; et al. Nrf 2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants 2021, 10, 1463.
- 84.
Ayer, A.; Zarjou, A.; Agarwal, A.; Stocker R. Heme Oxygenases in Cardiovascular Health and Disease. Physiol. Rev. 2016, 96, 1449–1508.
- 85.
Ishikawa, K.; Sugawara, D.; Wang, X.; et al. Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ. Res. 2001, 88, 506–512.
- 86.
Loboda, A.; Damulewicz, M.; Pyza, E.; et al. Role of Nrf 2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247.
- 87.
Karampetsou, N.; Alexopoulos, L.; Minia, A.; et al. Epicardial Adipose Tissue as an Independent Cardiometabolic Risk Factor for Coronary Artery Disease. Cureus 2022, 14, e25578.
- 88.
Salgado-Somoza, A.; Teijeira-Fernandez, E.; Rubio, J.; et al. Coronary artery disease is associated with higher epicardial retinol-binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clin. Endocrinol. 2012, 76, 51–58.
- 89.
Dozio, E.; Vianello, E.; Briganti, S.; et al. Expression of the Receptor for Advanced Glycation End Products in Epicardial Fat: Link with Tissue Thickness and Local Insulin Resistance in Coronary Artery Disease. J. Diabetes Res. 2016, 2016, 2327341.
- 90.
Kampmann, U.; Christensen, B.; Nielsen, T.S.; et al. GLUT4 and UBC9 protein expression is reduced in muscle from type 2 diabetic patients with severe insulin resistance. PLoS ONE 2011, 6, e27854.
- 91.
Ganjayi, M.S.; Karunakaran, R.S.; Gandham, S.; et al. Quercetin-3-O-rutinoside from Moringa oleifera Downregulates Adipogenesis and Lipid Accumulation and Improves Glucose Uptake by Activation of AMPK/Glut-4 in 3T3-L1 Cells. Rev. Bras. Farmacogn. 2023, 33, 334–343.
- 92.
Li, X.; Liu, J.; Lu, Q.; et al. AMPK: A therapeutic target of heart failure-not only metabolism regulation. Biosci. Rep. 2019, 39, BSR20181767.
- 93.
Li, L.; Aslam, M.; Siegler, B.H.; et al. Comparative Analysis of CTRP-Mediated Effects on Cardiomyocyte Glucose Metabolism: Cross Talk between AMPK and Akt Signaling Pathway. Cells 2021, 10, 905.