2504000177
  • Open Access
  • Article
Ginsenoside Re Alleviates Oxidative Stress Damage and Ferroptosis in Pulmonary Fibrosis Mice by Regulating the Nrf2/Keap1/GPX4 axis
  • Huicai Lin 1, 2, 3,   
  • Zhaoqin Wen 1, 2, 3,   
  • Linying Feng 1, 2, 3,   
  • Xiaoyan Chen 4,   
  • Yongxiang Song 5,   
  • Jiang Deng 1, 2, 3, *

Received: 30 Aug 2024 | Revised: 28 Sep 2024 | Accepted: 30 Sep 2024 | Published: 17 Dec 2024

Abstract

Pulmonary fibrosis (PF) is a chronic, progressive, irreversible, fibrotic interstitial lung disease with high mortality. Ginsenoside Re (G-Re) is one of the active components of ginseng, which has been proven to possess multiple pharmacological effects, including anti-inflammatory and antioxidant. Thus, G-Re is considered a potential therapeutic agent for treating PF. The present study explored the protective mechanisms of G-Re against bleomycin (BLM)-induced PF in mice and its potential as a therapeutic strategy for PF. A mouse model of BLM-induced PF was utilized to assess the effect of G-Re treatment, with N-acetylcysteine (NAC) set as a positive control agent. Various parameters such as lung function, histopathological changes, oxidative stress markers, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and its related protein expressions, including Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase 1 (HO-1), and NAD(P)H quinone oxidoreductase 1 (NQO-1), and ferroptosis signature protein glutathione peroxidase 4 (GPX4) were evaluated. Continuous administration of G-Re for 14 days significantly reduced lung injury, enhanced antioxidant capacity, activated the Nrf2/Keap1 signaling pathway, and inhibited ferroptosis as evidenced by GPX4. Additionally, G-Re treatment reduced collagen deposition, improved pulmonary function, and alleviated oxidative stress in the lung tissue of PF mice. These findings demonstrate that G-Re exerts its therapeutic effects against PF by modulating the Nrf2/Keap1/GPX4 axis and targeting oxidative stress and ferroptosis pathways, highlighting the potential of G-Re as a pharmacological intervention for PF and providing insights into the molecular mechanisms underlying its protective effects.

References 

  • 1.
    Chanda, D.; Otoupalova, E.; Smith, S.R.; et al. Developmental Pathways in the Pathogenesis of Lung Fibrosis. Mol. Asp. Med. 2019, 65, 56–69. https://doi.org/10.1016/j.mam.2018.08.004
  • 2.
    Spagnolo, P.; Kropski, J.A.; Jones, M.G.; et al. Idiopathic PF: Disease Mechanisms and Drug Development. Pharmacol. Ther. 2021, 222, 107798. https://doi.org/10.1016/j.pharmthera.2020.107798.
  • 3.
    Albert, R.K.; Phimister, E.G.; Schwartz, D.A. Revealing the Secrets of Idiopathic PF. N. Engl. J. Med. 2019, 380, 94–96. https://doi.org/10.1056/NEJMcibr1811639.
  • 4.
    Baradaran, H.R.; Jiang, C.; Huang, H.; et al. Adverse Events of Pirfenidone for the Treatment of PF: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2012, 7, e47024. https://doi.org/10.1371/journal.pone.0047024.
  • 5.
    Flaherty, K.R.; Wells, A.U.; Cottin, V.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. New Engl. J. Med. 2019, 381, 1718–1727. https://doi.org/10.1056/NEJMoa1908681.
  • 6.
    Fois, A.G.; Paliogiannis, P.; Sotgia, S.; et al. Evaluation of Oxidative Stress Biomarkers in Idiopathic PF and Therapeutic Applications: A Systematic Review. Respir. Res. 2018, 19, 51. https://doi.org/10.1186/s12931-018-0754-7.
  • 7.
    Otoupalova, E.; Smith, S.; Cheng, G.; et al. Oxidative Stress in PF. Compr. Physiology. 2020, 10, 509–547.
  • 8.
    Feng, L.; Gao, J.; Liu, Y.; et al. Icariside Ii Alleviates Oxygen-Glucose Deprivation and Reoxygenation-Induced Pc12 Cell Oxidative Injury by Activating Nrf2/Sirt3 Signaling Pathway. Biomed. Pharmacother. 2018, 103, 9–17. https://doi.org/10.1016/j.biopha.2018.04.005.
  • 9.
    Kudryavtseva, A.V.; Krasnov, G.S.; Dmitriev, A.A.; et al. Mitochondrial Dysfunction and Oxidative Stress in Aging and Cancer. Oncotarget 2016, 7, 44879–44905.
  • 10.
    Liu, J.; Wu, Z.; Liu, Y.; et al. Ros-Responsive Liposomes as an Inhaled Drug Delivery Nanoplatform for Idiopathic PF Treatment Via Nrf2 Signaling. J. Nanobiotechnol. 2022, 20, 213. https://doi.org/10.1186/s12951-022-01435-4.
  • 11.
    Zeng, Q.; Zhou, T.; Zhao, F.; et al. P62-Nrf2 Regulatory Loop Mediates the Anti-PF Effect of Bergenin. Antioxidants 2022, 11, 307. https://doi.org/10.3390/antiox11020307.
  • 12.
    Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. https://doi.org/10.1038/s41580-020-00324-8.
  • 13.
    He, R.; Liu, B.; Xiong, R.; et al. Itaconate Inhibits Ferroptosis of Macrophage Via Nrf2 Pathways against Sepsis-Induced Acute Lung Injury. Cell Death Discov. 2022, 8, 43. https://doi.org/10.1038/s41420-021-00807-3.
  • 14.
    Imai, H.; Matsuoka, M.; Kumagai, T.; et al. Lipid Peroxidation-Dependent Cell Death Regulated by Gpx4 and Ferroptosis. In Apoptotic and Non-Apoptotic Cell Death; Springer: Cham, Switzerland; 2016, Vol. 403, pp. 143–170.
  • 15.
    El-Horany, H.E.-S.; Atef, M.M.; Abdel Ghafar, M.T.; et al. Empagliflozin Ameliorates Bleomycin-Induced PF in Rats by Modulating Sesn2/Ampk/Nrf2 Signaling and Targeting Ferroptosis and Autophagy. Int. J. Mol. Sci. 2023, 24, 9481. https://doi.org/10.3390/ijms24119481.
  • 16.
    Wang, Y.; Wei, J.; Deng, H.; et al. The Role of Nrf2 in PF: Molecular Mechanisms and Treatment Approaches. Antioxidants 2022, 11, 1685. https://doi.org/10.3390/antiox11091685.
  • 17.
    Mancuso, C.; Santangelo, R. Panax Ginseng and Panax Quinquefolius: From Pharmacology to Toxicology. Food Chem. Toxicol. 2017, 107, 362–372. https://doi.org/10.1016/j.fct.2017.07.019.
  • 18.
    Wang, Q.-W.; Yu, X.-F.; Xu, H.-L.; et al. Ginsenoside Re Attenuates Isoproterenol-Induced Myocardial Injury in Rats. Evid. -Based Complement. Altern. Med. 2018, 2018, 8637134. https://doi.org/10.1155/2018/8637134.
  • 19.
    Madhi, I.; Kim, J.-H.; Shin, J.E.; et al. Ginsenoside Re Exhibits Neuroprotective Effects by Inhibiting Neuroinflammation Via Camk/Mapk/Nf‑Κb Signaling in Microglia. Mol. Med. Rep. 2021, 24, 698. https://doi.org/10.3892/mmr.2021.12337.
  • 20.
    Gao, X.-Y.; Liu, G.-C.; Zhang, J.-X.; et al. Pharmacological Properties of Ginsenoside Re. Front. Pharmacol. 2022, 13, 754191. https://doi.org/10.3389/fphar.2022.754191.
  • 21.
    Calverley, P.; Rogliani, P.; Papi, A. Safety of N-Acetylcysteine at High Doses in Chronic Respiratory Diseases: A Review. Drug Saf. 2020, 44, 273–290. https://doi.org/10.1007/s40264-020-01026-y.
  • 22.
    Szapiel, S.V.; Elson, N.A.; Fulmer, J.D.; et al. Bleomycin-Induced Interstitial Pulmonary Disease in the Nude, Athymic Mouse. Am. Rev. Respir. Dis. 1979, 120, 893–899.
  • 23.
    Ashcroft, T.; Simpson, J.M.; Timbrell, V. Simple Method of Estimating Severity of PF on a Numerical Scale. J. Clin. Pathol. 1988, 41, 467–470.
  • 24.
    Feng, L.; Li, Y.; Lin, M.; et al. Trilobatin Attenuates Cerebral Ischaemia/Reperfusion‐Induced Blood–Brain Barrier Dysfunction by Targeting Matrix Metalloproteinase 9: The Legend of a Food Additive. Br. J. Pharmacol. 2023, 181, 1005–1027. https://doi.org/10.1111/bph.16239.
  • 25.
    Kolb, P.; Upagupta, C.; Vierhout, M.; et al. The Importance of Interventional Timing in the Bleomycin Model of PF. Eur. Respir. J. 2020, 55, 1901105. https://doi.org/10.1183/13993003.01105-2019.
  • 26.
    Nathan, S.D.; Wanger, J.; Zibrak, J.D.; et al. Using Forced Vital Capacity (Fvc) in the Clinic to Monitor Patients with Idiopathic PF (Ipf): Pros and Cons. Expert Rev. Respir. Med. 2020, 15, 175–181. https://doi.org/10.1080/17476348.2020.1816831.
  • 27.
    Wang, Y.C.; Xie, H.; Zhang, Y.C.; et al. Exosomal Mir-107 Antagonizes Profibrotic Phenotypes of Pericytes by Targeting a Pathway Involving Hif-1α/Notch1/Pdgfrβ/Yap1/Twist1 Axis in Vitro. American journal of physiology. Heart Circ. Physiol. 2021, 320, H520–H534.
  • 28.
    Tang, Y.; Yuan, Q.; Zhao, C.; et al. Targeting Usp11 May Alleviate Radiation-Induced PF by Regulating Endothelium Tight Junction. Int. J. Radiat. Biol. 2021, 981, 30–40. https://doi.org/10.1080/09553002.2022.1998711.
  • 29.
    Zhao, S.; Zuo, W.; Chen, H.; et al. Effects of Pilose Antler Peptide on Bleomycin-Induced PF in Mice. Biomed. Pharmacother. 2019, 109, 2078–2083. https://doi.org/10.1016/j.biopha.2018.08.114.
  • 30.
    Zhou, J.; Peng, Z.; Wang, J. Trelagliptin Alleviates Lipopolysaccharide (Lps)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation 2021, 44, 1507–1517. https://doi.org/10.1007/s10753-021-01435-w.
  • 31.
    Raghu, G.; Berk, M.; Campochiaro, P.A.; et al. The Multifaceted Therapeutic Role of N-Acetylcysteine (Nac) in Disorders Characterized by Oxidative Stress. Curr. Neuropharmacol. 2021, 19, 1202–1224. https://doi.org/10.2174/1570159x19666201230144109.
  • 32.
    Schwalfenberg, G.K.; Emanuelli, T. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 9949453. https://doi.org/10.1155/2021/9949453.
  • 33.
    Wang, X.; Wang, Y.; Huang, D.; et al. Astragaloside Iv Regulates the Ferroptosis Signaling Pathway Via the Nrf2/Slc7a11/Gpx4 Axis to Inhibit Pm2.5-Mediated Lung Injury in Mice. Int. Immunopharmacol. 2022, 112, 109186. https://doi.org/10.1016/j.intimp.2022.109186.
  • 34.
    Fan, R.; Sui, J.; Dong, X.; et al. Wedelolactone Alleviates Acute Pancreatitis and Associated Lung Injury Via Gpx4 Mediated Suppression of Pyroptosis and Ferroptosis. Free Radic. Biol. Med. 2021, 173, 29–40. https://doi.org/10.1016/j.freeradbiomed.2021.07.009.
  • 35.
    Liu, P.; Feng, Y.; Li, H.; et al. Ferrostatin-1 Alleviates Lipopolysaccharide-Induced Acute Lung Injury Via Inhibiting Ferroptosis. Cell. Mol. Biol. Lett. 2020, 25, 10. https://doi.org/10.1186/s11658-020-00205-0.
  • 36.
    Wang, C.; Hua, S.; Song, L. Ferroptosis in PF: An Emerging Therapeutic Target. Front. Physiol. 2023, 14, 1205771. https://doi.org/10.3389/fphys.2023.1205771.
  • 37.
    Li, X.; Duan, L.; Yuan, S.; et al. Ferroptosis Inhibitor Alleviates Radiation-Induced Lung Fibrosis (Rilf) Via Down-Regulation of Tgf-Β1. J. Inflamm. 2019, 16, 11. https://doi.org/10.1186/s12950-019-0216-0.
Share this article:
How to Cite
Lin, H.; Wen, Z.; Feng, L.; Chen, X.; Song, Y.; Deng, J. Ginsenoside Re Alleviates Oxidative Stress Damage and Ferroptosis in Pulmonary Fibrosis Mice by Regulating the Nrf2/Keap1/GPX4 axis. International Journal of Drug Discovery and Pharmacology 2024, 3 (4), 100025. https://doi.org/10.53941/ijddp.2024.100025.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.