2504000180
  • Open Access
  • Review
The Role of Autophagy in Heart Disease
  • Osman Mohiuddin 1,   
  • Sabu Abraham 1,   
  • Hongyuan Zhang 1,   
  • Andrea Ruiz-Velasco 2, *

Received: 21 Jun 2024 | Revised: 15 Jul 2024 | Accepted: 16 Jul 2024 | Published: 19 Nov 2024

Abstract

Autophagy is an important biological process occurring in eukaryotic cells. There are different forms of autophagy all of which are specialised for their specific roles. The primary role of autophagy is protein degradation, regulating immune responses and maintaining cellular homeostasis. Due to its complexity, autophagy is modulated by many genes and signalling pathways. Autophagy can be induced via different mechanisms, particularly due to oxidative stress and inflammation resulting in lipid peroxidation products and the generation of cytokines. Dysregulation of autophagy modulation pathways can cause different cardiovascular pathologies ranging from atherosclerosis, cardiac hypertrophy, and failure. Targeting autophagy through therapeutic agents has proven to be fruitful in the treatment of diseases. Potential therapies comprising of Rapamycin, an mTOR inhibitor, and Resveratrol, a polyphenol, have both demonstrated efficacy in reversing cardiac hypertrophy through the modulation of autophagy. However, the challenge lies in translating the studies into real therapies which can be used clinically. It is vital to ensure that the effects of Rapamycin and Resveratrol are safe long-term. Perhaps this can be achieved through further understanding autophagy’s complex interaction with other cellular processes. This literature review will explore the different types of autophagy and their role in normal heart physiology. It also aims to study its relation to the heart diseases mentioned above. Lastly, using autophagy as a tool in disease management will also be discussed.

References 

  • 1.
    Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and Molecular Mechanisms. J. Pathol. 2010, 221, 3. https://doi.org/10.1002/PATH.2697.
  • 2.
    Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; et al. Autophagy in Major Human Diseases. EMBO J. 2021, 40, 108863. https://doi.org/10.15252/EMBJ.2021108863.
  • 3.
    Price, A.E. Heart Disease and Work. Heart 2004, 90, 1077–1084. https://doi.org/10.1136/HRT.2003.029298.
  • 4.
    Cheema, K.M.; Dicks, E.; Pearson, J.; et al. Long-Term Trends in the Epidemiology of Cardiovascular Diseases in the UK: Insights from the British Heart Foundation Statistical Compendium. Cardiovasc. Res. 2022, 118, 2267–2280. https://doi.org/10.1093/cvr/cvac053.
  • 5.
    Sciarretta, S.; Zhai, P.; Shao, D.; et al. Rheb Is a Critical Regulator of Autophagy during Myocardial Ischemia: Pathophysiological Implications in Obesity and Metabolic Syndrome. Circulation 2012, 125, 1134–1146. https://doi.org/10.1161/CIRCULATIONAHA.111.078212/-/DC1.
  • 6.
    Mizushima, N.; Komatsu, M. Autophagy: Renovation of Cells and Tissues. Cell 2011, 147, 728–741. https://doi.org/10.1016/j.cell.2011.10.026.
  • 7.
    Marzella, L.; Ahlberg, J.; Glaumann H. Autophagy, Heterophagy, Microautophagy and Crinophagy as the Means for Intracellular Degradation. Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol.1981, 36, 219–234. https://doi.org/10.1007/BF02912068.
  • 8.
    Li, W.W.; Li, J.; Bao, J.K. Microautophagy: Lesser-Known Self-Eating. Cell. Mol. Life Sci. 2012, 69, 1125–1136. https://doi.org/10.1007/S00018-011-0865-5/METRICS.
  • 9.
    Kirchner, P.; Bourdenx, M.; Madrigal-Matute, J.; et al. Proteome-Wide Analysis of Chaperone-Mediated Autophagy Targeting Motifs. PLoS Biol. 2019, 17. https://doi.org/10.1371/JOURNAL.PBIO.3000301.
  • 10.
    Losmanová T.; Janser, F.A.; Humbert, M.; et al. Chaperone-Mediated Autophagy Markers LAMP2A and HSC70 Are Independent Adverse Prognostic Markers in Primary Resected Squamous Cell Carcinomas of the Lung. Oxid. Med. Cell. Longev. 2020, 2020. https://doi.org/10.1155/2020/8506572.
  • 11.
    Rout, A.K.; Strub, M.P.; Piszczek, G.; et al. Structure of Transmembrane Domain of Lysosome-Associated Membrane Protein Type 2a (LAMP-2A) Reveals Key Features for Substrate Specificity in Chaperone-Mediated Autophagy. J. Biol. Chem. 2014, 289, 35111–35123. https://doi.org/10.1074/JBC.M114.609446.
  • 12.
    Ding, W.X.; Yin, X.M. Mitophagy: Mechanisms, Pathophysiological Roles, and Analysis. Biol. Chem.2012, 393, 547. https://doi.org/10.1515/HSZ-2012-0119.
  • 13.
    Cho, D.H.; Kim, Y.S.; Jo, D.S.; et al. Pexophagy: Molecular Mechanisms and Implications for Health and Diseases. Mol. Cells 2018, 41, 55. https://doi.org/10.14348/MOLCELLS.2018.2245.
  • 14.
    Cebollero, E.; Reggiori, F.; Kraft C. Reticulophagy and Ribophagy: Regulated Degradation of Protein Production Factories. Int. J. Cell Biol. 2012, 2012, 182834. https://doi.org/10.1155/2012/182834.
  • 15.
    He, C.; Klionsky, D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009, 43, 67. https://doi.org/10.1146/ANNUREV-GENET-102808-114910.
  • 16.
    Gross, A.S.; Graef M. Mechanisms of Autophagy in Metabolic Stress Response. J. Mol. Biol. 2020, 432, 28–52. https://doi.org/10.1016/J.JMB.2019.09.005.
  • 17.
    Stjepanovic, G.; Davies, C.W.; Stanley, R.E.; et al. Assembly and Dynamics of the Autophagy-Initiating Atg1 Complex. Proc. Natl. Acad. Sci. USA 2014, 111, 12793–12798. https://doi.org/10.1073/PNAS.1407214111.
  • 18.
    Suzuki, S.W.; Yamamoto, H.; Oikawa, Y.; et al. Atg13 HORMA Domain Recruits Atg9 Vesicles during Autophagosome Formation. Proc. Natl. Acad. Sci. USA 2015, 112, 3350–3355. https://doi.org/10.1073/PNAS.1421092112.
  • 19.
    Velikkakath, A.K.G.; Nishimura, T.; Oita, E.; et al. Mammalian Atg2 Proteins Are Essential for Autophagosome Formation and Important for Regulation of Size and Distribution of Lipid Droplets. Mol. Biol. Cell 2012, 23, 896–909. https://doi.org/10.1091/MBC.E11-09-0785.
  • 20.
    Itakura, E.; Kishi-Itakura, C.; Mizushima N. The Hairpin-Type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell 2012, 151, 1256–1269. https://doi.org/10.1016/J.CELL.2012.11.001.
  • 21.
    Vietri, M.; Radulovic, M.; Stenmark H. The Many Functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 2020, 21, 25–42. https://doi.org/10.1038/S41580-019-0177-4.
  • 22.
    MacGurn, J.A. Garbage on, Garbage off: New Insights into Plasma Membrane Protein Quality Control. Curr. Opin. Cell Biol. 2014, 29, 92–98. https://doi.org/10.1016/J.CEB.2014.05.001.
  • 23.
    Rubinsztein, D.C.; Codogno, P.; Levine B.Autophagy Modulation as a Potential Therapeutic Target for Diverse Diseases. Nat. Rev. Drug Discov. 2012, 11, 709–730. https://doi.org/10.1038/NRD3802.
  • 24.
    Tamboli, I.Y.; Tien, N.T.; Walter J.The Autophagy Initiating Kinase ULK1 Is Regulated via Opposing Phosphorylation by AMPK and MTOR. Autophagy 2011, 7, 643–644. https://doi.org/10.4161/AUTO.7.6.15123.
  • 25.
    Saitoh, T.; Fujita, N.; Jang, M.H.; et al. Loss of the Autophagy Protein Atg16L1 Enhances Endotoxin-Induced IL-1beta Production. Nature 2008, 456, 264–268. https://doi.org/10.1038/NATURE07383.
  • 26.
    Mizushima, N.; Yoshimori, T.; Ohsumi Y.The Role of Atg Proteins in Autophagosome Formation. Annu. Rev. Cell Dev. Biol. 2011, 27, 107–132. https://doi.org/10.1146/ANNUREV-CELLBIO-092910-154005.
  • 27.
    Komatsu, M.; Tanida, I.; Ueno, T.; et al. The C-Terminal Region of an Apg7p/Cvt2p Is Required for Homodimerization and Is Essential for Its E1 Activity and E1-E2 Complex Formation. J. Biol. Chem. 2001, 276, 9846–9854. https://doi.org/10.1074/JBC.M007737200.
  • 28.
    Wesch, N.; Kirkin, V.; Rogov, V.V.Atg8-Family Proteins-Structural Features and Molecular Interactions in Autophagy and Beyond. Cells 2020, 9. https://doi.org/10.3390/CELLS9092008.
  • 29.
    He, C.; Baba, M.; Cao, Y.; et al. Self-Interaction Is Critical for Atg9 Transport and Function at the Phagophore Assembly Site during Autophagy. Mol. Biol. Cell 2008, 19, 5506. https://doi.org/10.1091/MBC.E08-05-0544.
  • 30.
    Yue, Z.; Jin, S.; Yang, C.; et al. Beclin 1, an Autophagy Gene Essential for Early Embryonic Development, Is a Haploinsufficient Tumor Suppressor. Proc. Natl. Acad. Sci. USA 2003, 100, 15077. https://doi.org/10.1073/PNAS.2436255100.
  • 31.
    Zhu, Y.; Pires, K.M.P.; Whitehead, K.J.; et al. Mechanistic Target of Rapamycin (Mtor) Is Essential for Murine Embryonic Heart Development and Growth. PLoS ONE 2013, 8, 54221. https://doi.org/10.1371/JOURNAL.PONE.0054221.
  • 32.
    Moscat, J.; Diaz-Meco, M.T. P62 at the Crossroads of Autophagy, Apoptosis, and Cancer. Cell 2009, 137, 1001. https://doi.org/10.1016/J.CELL.2009.05.023.
  • 33.
    Hanson, P.I.; Roth, R.; Lin, Y.; et al. Plasma Membrane Deformation by Circular Arrays of ESCRT-III Protein Filaments. J. Cell Biol. 2008, 180, 389–402. https://doi.org/10.1083/JCB.200707031.
  • 34.
    He, C.; Bassik, M.C.; Moresi, V.; et al. Exercise–Induced BCL2–Regulated Autophagy Is Required for Muscle Glucose Homeostasis. Nature 2012, 481, 511. https://doi.org/10.1038/NATURE10758.
  • 35.
    Klionsky, D.J.; Saltiel, A.R. Autophagy Works Out. Cell Metab. 2012, 15, 273. https://doi.org/10.1016/J.CMET.2012.02.008.
  • 36.
    Campos, J.C.; Queliconi, B.B.; Bozi, et al. Exercise Reestablishes Autophagic Flux and Mitochondrial Quality Control in Heart Failure. Autophagy 2017, 13, 1304. https://doi.org/10.1080/15548627.2017.1325062.
  • 37.
    Miyamoto, S. Autophagy and Cardiac Aging. Cell Death Differ. 2019, 26, 653. https://doi.org/10.1038/S41418-019-0286-9.
  • 38.
    Dai, D.F.; Chen, T.; Johnson, S.C.; et al. Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxid. Redox Signal. 2012, 16, 1492. https://doi.org/10.1089/ARS.2011.4179.
  • 39.
    Chang, J.T.; Kumsta, C.; Hellman, A.B.; et al. Spatiotemporal Regulation of Autophagy during Caenorhabditis Elegans Aging. Elife 2017, 6, e18459. https://doi.org/10.7554/ELIFE.18459.
  • 40.
    Taneike, M.; Yamaguchi, O.; Nakai, A.; et al. Inhibition of Autophagy in the Heart Induces Age-Related Cardiomyopathy. Autophagy 2010, 6, 600–606. https://doi.org/10.4161/auto.6.5.11947.
  • 41.
    Gozzelino, R.; Jeney, V.; Soares, M.P. Mechanisms of Cell Protection by Heme Oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323–354. https://doi.org/10.1146/ANNUREV.PHARMTOX.010909.105600/CITE/REFWORKS.
  • 42.
    Butterfield, D.A.; Lauderback, C.M. Lipid Peroxidation and Protein Oxidation in Alzheimer’s Disease Brain: Potential Causes and Consequences Involving Amyloid β-Peptide-Associated Free Radical Oxidative Stress. Free Radic. Biol. Med. 2002, 32, 1050–1060. https://doi.org/10.1016/S0891-5849(02)00794-3.
  • 43.
    Sharma, S.; Patel, F.; Ara, H.; et al. Rotenone-Induced 4-HNE Aggresome Formation and Degradation in HL-1 Cardiomyocytes: Role of Autophagy Flux. Int. J. Mol. Sci. 2022, 23, 4675. https://doi.org/10.3390/IJMS23094675.
  • 44.
    Cheng, J.; Ohsaki, Y.; Tauchi-Sato, K.; et al. Cholesterol Depletion Induces Autophagy. Biochem. Biophys. Res. Commun. 2006, 351, 246–252. https://doi.org/10.1016/J.BBRC.2006.10.042.
  • 45.
    Seo, Y.K.; Jeon T., Ⅱ; Chong, H.K.; et al. Genome-Wide Localization of SREBP-2 in Hepatic Chromatin Predicts a Role in Autophagy. Cell Metab. 2011, 13, 367–375. https://doi.org/10.1016/J.CMET.2011.03.005.
  • 46.
    Assmann, G.; Schulte H.The Prospective Cardiovascular Münster (PROCAM) Study: Prevalence of Hyperlipidemia in Persons with Hypertension and/or Diabetes Mellitus and the Relationship to Coronary Heart Disease. Am. Heart J.1988, 116, 1713–1724. https://doi.org/10.1016/0002-8703(88)90220-7.
  • 47.
    Ezzati, M.; Lopez, A.D.; Rodgers, A.; et al. Selected Major Risk Factors and Global and Regional Burden of Disease. Lancet 2002, 360, 1347–1360. https://doi.org/10.1016/S0140-6736(02)11403-6.
  • 48.
    Stamler, J.; Stamler, R.; Neaton, J.D. Blood Pressure, Systolic and Diastolic, and Cardiovascular Risks: US Population Data. Arch. Intern. Med. 1993, 153, 598–615. https://doi.org/10.1001/ARCHINTE.1993.00410050036006.
  • 49.
    Burch, G.E.; Ray, C.T.; Cronvich, J.A. Certain Mechanical Peculiarities of the Human Cardiac Pump in Normal and Diseased States. Circulation 1952, 5, 504–513. https://doi.org/10.1161/01.CIR.5.4.504.
  • 50.
    Levy, D.; Garrison, R.J.; Savage, D.D.; et al. Prognostic Implications of Echocardiographically Determined Left Ventricular Mass in the Framingham Heart Study. N. Engl. J. Med. 1990, 322, 1561–1566. https://doi.org/10.1056/NEJM199005313222203.
  • 51.
    Frey, N.; Katus, H.A.; Olson, E.N.; et al. Hypertrophy of the Heart: A New Therapeutic Target? Circulation 2004, 109, 1580–1589. https://doi.org/10.1161/01.CIR.0000120390.68287.BB.
  • 52.
    Weber, T.; Lang, I.; Zweiker, R.; et al. Hypertension and Coronary Artery Disease: Epidemiology, Physiology, Effects of Treatment, and Recommendations: A Joint Scientific Statement from the Austrian Society of Cardiology and the Austrian Society of Hypertension. Wien. Klin. Wochenschr. 2016, 128, 467–479. https://doi.org/10.1007/S00508-016-0998-5/METRICS.
  • 53.
    Ohtani, T.; Mohammed, S.F.; Yamamoto, K.; et al. Diastolic Stiffness as Assessed by Diastolic Wall Strain Is Associated with Adverse Remodelling and Poor Outcomes in Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2012, 33, 1742. https://doi.org/10.1093/EURHEARTJ/EHS135.
  • 54.
    Kitzman, D.W.; Little, W.C.; Brubaker, P.H.; et al. Pathophysiological Characterization of Isolated Diastolic Heart Failure in Comparison to Systolic Heart Failure. JAMA 2002, 288, 2144–2150. https://doi.org/10.1001/JAMA.288.17.2144.
  • 55.
    Tabas, I.; Williams, K.J.; Borén J. Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis: Update and Therapeutic Implications. Circulation 2007, 116, 1832–1844. https://doi.org/10.1161/CIRCULATIONAHA.106.676890.
  • 56.
    Tabas, I. Macrophage Apoptosis in Atherosclerosis: Consequences on Plaque Progression and the Role of Endoplasmic Reticulum Stress. Antioxid. Redox Signal. 2009, 11, 2333. https://doi.org/10.1089/ARS.2009.2469.
  • 57.
    Padró T.; Peña, E.; García-Arguinzonis, M.; et al. Low-Density Lipoproteins Impair Migration of Human Coronary Vascular Smooth Muscle Cells and Induce Changes in the Proteomic Profile of Myosin Light Chain. Cardiovasc. Res. 2008, 77, 211–220. https://doi.org/10.1093/CVR/CVM045.
  • 58.
    Libby, P.; Buring, J.E.; Badimon, L.; et al. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 56. https://doi.org/10.1038/s41572-019-0106-z.
  • 59.
    Abdellatif, M.; Ljubojevic-Holzer, S.; Madeo, F.; et al. Autophagy in Cardiovascular Health and Disease. Prog. Mol. Biol. Transl. Sci. 2020, 172, 87–106. https://doi.org/10.1016/BS.PMBTS.2020.04.022.
  • 60.
    Li, L.; Xu, J.; He, L.; et al. The Role of Autophagy in Cardiac Hypertrophy. Acta Biochim. Biophys. Sin. 2016, 48, 491. https://doi.org/10.1093/ABBS/GMW025.
  • 61.
    Weng, L.Q.; Zhang, W.; Ye, Y.; et al. Aliskiren Ameliorates Pressure Overload-Induced Heart Hypertrophy and Fibrosis in Mice. Acta Pharmacol. Sin. 2014, 35, 1005. https://doi.org/10.1038/APS.2014.45.
  • 62.
    Yin, X.; Peng, C.; Ning, W.; et al. MiR-30a Downregulation Aggravates Pressure Overload-Induced Cardiomyocyte Hypertrophy. Mol. Cell. Biochem. 2013, 379, 1–6. https://doi.org/10.1007/S11010-012-1552-Z.
  • 63.
    Fidziańska, A.; Bilińska, Z.T.; Walczak, E.; et al. Autophagy in Transition from Hypertrophic Cardiomyopathy to Heart Failure. J. Electron Microsc. 2010, 59, 181–183. https://doi.org/10.1093/JMICRO/DFP048.
  • 64.
    Rothermel, B.A.; Hill, J.A. Autophagy in Load-Induced Heart Disease. Circ. Res.2008, 103, 1363. https://doi.org/10.1161/CIRCRESAHA.108.186551.
  • 65.
    Liu, C.; Xue, R.; Wu, D.; et al. REDD1 Attenuates Cardiac Hypertrophy via Enhancing Autophagy. Biochem. Biophys. Res. Commun. 2014, 454, 215–220. https://doi.org/10.1016/J.BBRC.2014.10.079.
  • 66.
    Li, Y.; Chen, C.; Yao, F.; et al. AMPK Inhibits Cardiac Hypertrophy by Promoting Autophagy via MTORC1. Arch. Biochem. Biophys. 2014, 558, 79–86. https://doi.org/10.1016/J.ABB.2014.06.023.
  • 67.
    Poznyak, A.V.; Nikiforov, N.G.; Wu W.-K.; et al. Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells 2021, 10, 443. https://doi.org/10.3390/cells10020443.
  • 68.
    Sergin, I.; Bhattacharya, S.; Emanuel, R.; et al. Inclusion Bodies Enriched for P62 and Polyubiquitinated Proteins in Macrophages Protect against Atherosclerosis. Sci. Signal. 2016, 9, ra2–ra2. https://doi.org/10.1126/SCISIGNAL.AAD5614/SUPPL_FILE/9_RA2_SM.PDF.
  • 69.
    Linton, M.F.; Yancey, P.G.; Davies, S.S.; et al. The Role of Lipids and Lipoproteins in Atherosclerosis. Science 2019, 111, 166–186.
  • 70.
    Liu, W.J.; Ye, L.; Huang, W.F.; et al. P62 Links the Autophagy Pathway and the Ubiqutin-Proteasome System upon Ubiquitinated Protein Degradation. Cell. Mol. Biol. Lett. 2016, 21, 29. https://doi.org/10.1186/S11658-016-0031-Z/FIGURES/3.
  • 71.
    He, C.; Zhu, H.; Zhang, W.; et al. 7-Ketocholesterol Induces Autophagy in Vascular Smooth Muscle Cells through Nox4 and Atg4B. Am. J. Pathol. 2013, 183, 626–637. https://doi.org/10.1016/J.AJPATH.2013.04.028.
  • 72.
    Nury, T.; Zarrouk, A.; Yammine, A.; et al. Oxiapoptophagy: A Type of Cell Death Induced by Some Oxysterols. Br. J. Pharmacol. 2021, 178, 3115–3123. https://doi.org/10.1111/BPH.15173.
  • 73.
    Ouyang, J.; Xiao, Y.; Ren, Q.; et al. 7-Ketocholesterol Induces Oxiapoptophagy and Inhibits Osteogenic Differentiation in MC3T3-E1 Cells. Cells 2022, 11, 2882. https://doi.org/10.3390/CELLS11182882.
  • 74.
    Xu, Y.; Bu, H.; Jiang, Y.; et al. N‑acetyl Cysteine Prevents Ambient Fine Particulate Matter‑potentiated Atherosclerosis via Inhibition of Reactive Oxygen Species‑induced Oxidized Low Density Lipoprotein Elevation and Decreased Circulating Endothelial Progenitor Cell. Mol. Med. Rep. 2022, 26, 1–9. https://doi.org/10.3892/MMR.2022.12752.
  • 75.
    Nahapetyan, H.; Moulis, M.; Grousset, E.; et al. Altered Mitochondrial Quality Control in Atg7-Deficient VSMCs Promotes Enhanced Apoptosis and Is Linked to Unstable Atherosclerotic Plaque Phenotype. Cell Death Dis. 2019, 10, 119. https://doi.org/10.1038/S41419-019-1400-0.
  • 76.
    Chen, R.; McVey, D.G.; Shen, D.; et al. Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis. J. Am. Heart Assoc. 2023, 12, 31121. https://doi.org/10.1161/JAHA.123.031121.
  • 77.
    Markin, A.M.; Khotina, V.A.; Zabudskaya, X.G.; et al. Disturbance of Mitochondrial Dynamics and Mitochondrial Therapies in Atherosclerosis. Life 2021, 11, 165. https://doi.org/10.3390/LIFE11020165.
  • 78.
    Osonoi, Y.; Mita, T.; Azuma, K.; et al. Defective Autophagy in Vascular Smooth Muscle Cells Enhances Cell Death and Atherosclerosis. Autophagy 2018, 14, 1991–2006. https://doi.org/10.1080/15548627.2018.1501132.
  • 79.
    Orogo, A.M.; Gustafsson Å.B. Therapeutic Targeting of Autophagy: Potential and Concerns in Treating Cardiovascular Disease. Circ. Res. 2015, 116, 489. https://doi.org/10.1161/CIRCRESAHA.116.303791.
  • 80.
    Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; et al. AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Mol. Cell 2008, 30, 214. https://doi.org/10.1016/J.MOLCEL.2008.03.003.
  • 81.
    Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; et al. Phosphorylation of ULK1 (HATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science 2011, 331, 456. https://doi.org/10.1126/SCIENCE.1196371.
  • 82.
    Saxton, R.A.; Sabatini, D.M.MTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 169, 361–371. https://doi.org/10.1016/J.CELL.2017.03.035.
  • 83.
    Zhang, D.; Contu, R.; Latronico, M.V.G.; et al. MTORC1 Regulates Cardiac Function and Myocyte Survival through 4E-BP1 Inhibition in Mice. J. Clin. Invest. 2010, 120, 2805. https://doi.org/10.1172/JCI43008.
  • 84.
    Deitersen, J.; Berning, L.; Stuhldreier, F.; et al. High-Throughput Screening for Natural Compound-Based Autophagy Modulators Reveals Novel Chemotherapeutic Mode of Action for Arzanol. Cell Death Dis. 2021, 12, 560. https://doi.org/10.1038/s41419-021-03830-5.
  • 85.
    Sliwoski, G.; Kothiwale, S.; Meiler, J.; et al. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014, 66, 334. https://doi.org/10.1124/PR.112.007336.
  • 86.
    Demeter, A.; Romero-Mulero, M.C.; Csabai, L.; et al. ULK1 and ULK2 Are Less Redundant than Previously Thought: Computational Analysis Uncovers Distinct Regulation and Functions of These Autophagy Induction Proteins. Sci. Rep. 2020, 10, 10940. https://doi.org/10.1038/S41598-020-67780-2.
  • 87.
    Kim, Y.H.; Park, B.S.; Bhatia, S.K.; et al. Production of Rapamycin in Streptomyces Hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology. J. Microbiol. Biotechnol. 2014, 24, 1319–1326. https://doi.org/10.4014/JMB.1403.03024.
  • 88.
    Blagosklonny, M.V. Cancer Prevention with Rapamycin. Oncotarget 2023, 14, 342. https://doi.org/10.18632/ONCOTARGET.28410.
  • 89.
    Augustine, J.J.; Bodziak, K.A.; Hricik, D.E.Use of Sirolimus in Solid Organ Transplantation. Drugs 2007, 67, 369–391. https://doi.org/10.2165/00003495-200767030-00004.
  • 90.
    McMullen, J.R.; Sherwood, M.C.; Tarnavski, O.; et al. Inhibition of MTOR Signaling With Rapamycin Regresses Established Cardiac Hypertrophy Induced by Pressure Overload. Circulation 2004, 109, 3050–3055. https://doi.org/10.1161/01.CIR.0000130641.08705.45.
  • 91.
    Seth, M.; Sumbilla, C.; Mullen, S.P.; et al. Sarco(Endo)Plasmic Reticulum Ca2+ ATPase (SERCA) Gene Silencing and Remodeling of the Ca2+ Signaling Mechanism in Cardiac Myocytes. Proc. Natl. Acad. Sci. USA 2004, 101, 16683–16688. https://doi.org/10.1073/PNAS.0407537101.
  • 92.
    Das, A.; Durrant, D.; Koka, S.; et al. Mammalian Target of Rapamycin (MTOR) Inhibition with Rapamycin Improves Cardiac Function in Type 2 Diabetic Mice: Potential role of attenuated oxidative stress and altered contractile protein expression. J. Biol. Chem. 2014, 289, 4145. https://doi.org/10.1074/JBC.M113.521062.
  • 93.
    Chan, A.Y.M.; Dolinsky, V.W.; Soltys, C.L.M.; et al. Resveratrol Inhibits Cardiac Hypertrophy via AMP-Activated Protein Kinase and Akt. J. Biol. Chem. 2008, 283, 24194. https://doi.org/10.1074/JBC.M802869200.
  • 94.
    Salehi, B.; Mishra, A.P.; Nigam, M.; et al. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. https://doi.org/10.3390/BIOMEDICINES6030091.
  • 95.
    Tian, Y.; Song, W.; Li, D.; et al. Resveratrol As A Natural Regulator Of Autophagy For Prevention And Treatment Of Cancer. Onco. Targets. Ther. 2019, 12, 8601. https://doi.org/10.2147/OTT.S213043.
  • 96.
    Szymkowiak, I.; Kucinska, M.; Murias M. Between the Devil and the Deep Blue Sea—Resveratrol, Sulfotransferases and Sulfatases—A Long and Turbulent Journey from Intestinal Absorption to Target Cells. Molecules 2023, 28, 3297. https://doi.org/10.3390/MOLECULES28083297.
  • 97.
    Wang, Y.; Hong, C.; Wu, Z.; et al. Resveratrol in Intestinal Health and Disease: Focusing on Intestinal Barrier. Front. Nutr. 2022, 9, 848400. https://doi.org/10.3389/FNUT.2022.848400.
  • 98.
    Yu, P.; Zhang, Y.; Li, C.; et al. Class III PI3K-Mediated Prolonged Activation of Autophagy Plays a Critical Role in the Transition of Cardiac Hypertrophy to Heart Failure. J. Cell. Mol. Med. 2015, 19, 1710. https://doi.org/10.1111/JCMM.12547.
  • 99.
    Jiang, M.; Wu, W.; Xiong, Z.; et al. Targeting Autophagy Drug Discovery: Targets, Indications and Development Trends. Eur. J. Med. Chem. 2024, 267, 116117. https://doi.org/10.1016/J.EJMECH.2023.116117.
  • 100.
    Sun, D.; Gao, W.; Hu, H.; et al. Why 90% of Clinical Drug Development Fails and How to Improve It?Acta Pharm. Sin. B 2022, 12, 3049. https://doi.org/10.1016/J.APSB.2022.02.002.
  • 101.
    Zachari, M.; Rainard, J.M.; Pandarakalam, G.C.; et al. The Identification and Characterisation of Autophagy Inhibitors from the Published Kinase Inhibitor Sets. Biochem. J. 2020, 477, 801–814. https://doi.org/10.1042/BCJ20190846.
Share this article:
How to Cite
Mohiuddin, O.; Abraham, S.; Zhang, H.; Ruiz-Velasco, A. The Role of Autophagy in Heart Disease. International Journal of Drug Discovery and Pharmacology 2024, 3 (4), 100021. https://doi.org/10.53941/ijddp.2024.100021.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.