- 1.
Yap, J.; Irei, J.; Lozano-Gerona, J.; et al. Macrophages in Cardiac Remodelling after Myocardial Infarction. Nat. Rev. Cardiol. 2023, 20, 373–385.
- 2.
Sica, A.; Mantovani, A. Macrophage Plasticity and Polarization: In Vivo Veritas. J. Clin. Investig. 2012, 122, 787–795.
- 3.
Epelman, S.; Lavine, K.J.; Beaudin, A.E.; et al. Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity 2014, 40, 91–104.
- 4.
Chen, Y.; Hu, M.; Wang, L.; et al. Macrophage M1/M2 Polarization. Eur. J. Pharmacol. 2020, 877, 173090.
- 5.
Vadevoo, S.M.P.; Gunassekaran, G.R.; Lee, C.; et al. The Macrophage Odorant Receptor Olfr78 Mediates the Lactate-Induced M2 Phenotype of Tumor-Associated Macrophages. Proc. Natl. Acad. Sci. USA 2021, 118, e2102434118.
- 6.
Law, Y.M.; Lal, A.K.; Chen, S.; et al. Diagnosis and Management of Myocarditis in Children: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e123–e135.
- 7.
Hua, X.; Hu, G.; Hu, Q.; et al. Single-Cell RNA Sequencing to Dissect the Immunological Network of Autoimmune Myocarditis. Circulation 2020, 142, 384–400.
- 8.
Ma, P.; Liu, J.; Qin, J.; et al. Expansion of Pathogenic Cardiac Macrophages in Immune Checkpoint Inhibitor Myocarditis. Circulation 2024, 149, 48–66.
- 9.
Lafuse, W.P.; Wozniak, D.J.; Rajaram, M.V.S. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells 2020, 10, 51.
- 10.
Dong, J.; Lu, J.; Cen, Z.; et al. Cardiac Macrophages Undergo Dynamic Changes after Coxsackievirus B3 Infection and Promote the Progression of Myocarditis. J. Med. Virol. 2023, 95, e29004.
- 11.
Li, K.; Xu, W.; Guo, Q.; et al. Differential Macrophage Polarization in Male and Female BALB/c Mice Infected with Coxsackievirus B3 Defines Susceptibility to Viral Myocarditis. Circ. Res. 2009, 105, 353–364.
- 12.
Peet, C.; Ivetic, A.; Bromage, D.I.; et al. Cardiac Monocytes and Macrophages after Myocardial Infarction. Cardiovasc. Res. 2020, 116, 1101–1112.
- 13.
Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; et al. Nucleotides Released by Apoptotic Cells Act as a Find-Me Signal to Promote Phagocytic Clearance. Nature 2009, 461, 282–286.
- 14.
Gerlach, B.D.; Ampomah, P.B.; Yurdagul, A.; et al. Efferocytosis Induces Macrophage Proliferation to Help Resolve Tissue Injury. Cell Metab. 2021, 33, 2445–2463.e8.
- 15.
Doran, A.C.; Yurdagul, A.; Tabas, I. Efferocytosis in Health and Disease. Nat. Rev. Immunol. 2020, 20, 254–267.
- 16.
Bajpai, G.; Bredemeyer, A.; Li, W.; et al. Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circ. Res. 2019, 124, 263–278.
- 17.
Rizzo, G.; Gropper, J.; Piollet, M.; et al. Dynamics of Monocyte-Derived Macrophage Diversity in Experimental Myocardial Infarction. Cardiovasc. Res. 2023, 119, 772–785.
- 18.
Elliott, M.R.; Ravichandran, K.S. The Dynamics of Apoptotic Cell Clearance. Dev. Cell 2016, 38, 147–160.
- 19.
Kinchen, J.M.; Ravichandran, K.S. Phagosome Maturation: Going through the Acid Test. Nat. Rev. Mol. Cell Biol. 2008, 9, 781–795.
- 20.
Glinton, K.E.; Ma, W.; Lantz, C.; et al. Macrophage-Produced VEGFC Is Induced by Efferocytosis to Ameliorate Cardiac Injury and Inflammation. J. Clin. Investig. 2022, 132, e140685.
- 21.
Lavine, K.J.; Epelman, S.; Uchida, K.; et al. Distinct Macrophage Lineages Contribute to Disparate Patterns of Cardiac Recovery and Remodeling in the Neonatal and Adult Heart. Proc. Natl. Acad. Sci. USA 2014, 111, 16029–16034.
- 22.
Dick, S.A.; Zaman, R.; Epelman, S. Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Front. Immunol. 2019, 10, 2146.
- 23.
Fantin, A.; Vieira, J.M.; Gestri, G.; et al. Tissue Macrophages Act as Cellular Chaperones for Vascular Anastomosis Downstream of VEGF-Mediated Endothelial Tip Cell Induction. Blood 2010, 116, 829–840.
- 24.
Aurora, A.B.; Porrello, E.R.; Tan, W.; et al. Macrophages Are Required for Neonatal Heart Regeneration. J. Clin. Investig. 2014, 124, 1382–1392.
- 25.
Simões, F.C.; Cahill, T.J.; Kenyon, A.; et al. Macrophages Directly Contribute Collagen to Scar Formation during Zebrafish Heart Regeneration and Mouse Heart Repair. Nat. Commun. 2020, 11, 600.
- 26.
Chang, M.Y.; Chan, C.K.; Braun, K.R.; et al. Monocyte-to-Macrophage Differentiation: Synthesis and Secretion of a Complex Extracellular Matrix. J. Biol. Chem. 2012, 287, 14122–14135.
- 27.
Liu, B.; Zhang, H.-G.; Zhu, Y.; et al. Cardiac Resident Macrophages Are Involved in Hypoxia‑induced Postnatal Cardiomyocyte Proliferation. Mol Med Rep 2017, 15, 3541–3548.
- 28.
Ma, F.; Li, Y.; Jia, L.; et al. Macrophage-Stimulated Cardiac Fibroblast Production of IL-6 Is Essential for TGF β/Smad Activation and Cardiac Fibrosis Induced by Angiotensin II. PLoS ONE 2012, 7, e35144.
- 29.
Wang, C.; Zhang, C.; Liu, L.; et al. Macrophage-Derived Mir-155-Containing Exosomes Suppress Fibroblast Proliferation and Promote Fibroblast Inflammation during Cardiac Injury. Mol. Ther. 2017, 25, 192–204.
- 30.
Yue, Y.; Huang, S.; Wang, L.; et al. M2b Macrophages Regulate Cardiac Fibroblast Activation and Alleviate Cardiac Fibrosis After Reperfusion Injury. Circ. J. 2020, 84, 626–635.
- 31.
Wu, L.; Tai, Y.; Hu, S.; et al. Bidirectional Role of Β2-Adrenergic Receptor in Autoimmune Diseases. Front. Pharmacol. 2018, 9, 1313.
- 32.
Fu, Q.; Wang, Y.; Yan, C.; et al. Phosphodiesterase in Heart and Vessels: From Physiology to Diseases. Physiol. Rev. 2024, 104, 765–834.
- 33.
Hertz, A.L.; Beavo, J.A. Cyclic Nucleotides and Phosphodiesterases in Monocytic Differentiation. In Phosphodiesterases as Drug Targets; Francis, S.H., Conti, M., Houslay, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 365–390.
- 34.
Surdo, N.C.; Berrera, M.; Koschinski, A.; et al. FRET Biosensor Uncovers cAMP Nano-Domains at β-Adrenergic Targets That Dictate Precise Tuning of Cardiac Contractility. Nat. Commun. 2017, 8, 15031.
- 35.
Mongillo, M.; Tocchetti, C.G.; Terrin, A.; et al. Compartmentalized Phosphodiesterase-2 Activity Blunts β-Adrenergic Cardiac Inotropy via an NO/cGMP-Dependent Pathway. Circ. Res. 2006, 98, 226–234.
- 36.
Xiao, H.; Li, H.; Wang, J.-J.; et al. IL-18 Cleavage Triggers Cardiac Inflammation and Fibrosis upon β-Adrenergic Insult. Eur. Heart J. 2018, 39, 60–69.
- 37.
Lyu, J.; Wang, M.; Kang, X.; et al. Macrophage-Mediated Regulation of Catecholamines in Sympathetic Neural Remodeling after Myocardial Infarction. Basic Res. Cardiol. 2020, 115, 56.
- 38.
Petkevicius, K.; Bidault, G.; Virtue, S.; et al. Norepinephrine Promotes Triglyceride Storage in Macrophages via Beta2-Adrenergic Receptor Activation. FASEB J. 2021, 35, e21266.
- 39.
Liu, W.; Chen, W.; Xie, M.; et al. Traumatic Brain Injury Stimulates Sympathetic Tone-Mediated Bone Marrow Myelopoiesis to Favor Fracture Healing. Signal Transduct. Target. Ther. 2023, 8, 260.
- 40.
Ulleryd, M.A.; Bernberg, E.; Yang, L.J.; et al. Metoprolol Reduces Proinflammatory Cytokines and Atherosclerosis in ApoE-/- Mice. BioMed Res. Int. 2014, 2014, e548783.
- 41.
Clemente-Moragón, A.; Gomez, M.; Villena-Gutierrez, R.; et al. Metoprolol Exerts a Non-Class Effect against Ischaemia-Reperfusion Injury by Abrogating Exacerbated Inflammation. Eur. Heart J. 2020, 41, 4425–4440.
- 42.
Toyoda, S.; Haruyama, A.; Inami, S.; et al. Effects of Carvedilol vs Bisoprolol on Inflammation and Oxidative Stress in Patients with Chronic Heart Failure. J. Cardiol. 2020, 75, 140–147.
- 43.
Feuerstein, G.Z.; Ruffolo, R.R. Carvedilol, a Novel Multiple Action Antihypertensive Agent with Antioxidant Activity and the Potential for Myocardial and Vascular Protection. Eur. Heart J. 1995, 16 SupplF, 38–42.
- 44.
Zhang, J.; Jiang, P.; Sheng, L.; et al. A Novel Mechanism of Carvedilol Efficacy for Rosacea Treatment: Toll-Like Receptor 2 Inhibition in Macrophages. Front. Immunol. 2021, 12, 609615.
- 45.
Cimmino, G.; Ibanez, B.; Giannarelli, C.; et al. Carvedilol Administration in Acute Myocardial Infarction Results in Stronger Inhibition of Early Markers of Left Ventricular Remodeling than Metoprolol. Int. J. Cardiol. 2011, 153, 256–261.
- 46.
Udelson, J.E. Ventricular Remodeling in Heart Failure and the Effect of Beta-Blockade. Am. J. Cardiol. 2004, 93, 43–48.
- 47.
Apaydin, O.; Altaikyzy, A.; Filosa, A.; et al. Alpha-1 Adrenergic Signaling Drives Cardiac Regeneration via Extracellular Matrix Remodeling Transcriptional Program in Zebrafish Macrophages. Dev. Cell 2023, 58, 2460–2476.
- 48.
Bystrom, J.; Evans, I.; Newson, J.; et al. Resolution-Phase Macrophages Possess a Unique Inflammatory Phenotype That Is Controlled by cAMP. Blood 2008, 112, 4117–4127.
- 49.
Lima, K.M.; Vago, J.P.; Caux, T.R.; et al. The Resolution of Acute Inflammation Induced by Cyclic AMP Is Dependent on Annexin A1. J. Biol. Chem. 2017, 292, 13758–13773.
- 50.
Jiang, H.; Wei, H.; Wang, H.; et al. Zeb1-Induced Metabolic Reprogramming of Glycolysis Is Essential for Macrophage Polarization in Breast Cancer. Cell Death Dis. 2022, 13, 206.
- 51.
Ye, J.; Zeng, B.; Zhong, M.; et al. Scutellarin Inhibits Caspase-11 Activation and Pyroptosis in Macrophages via Regulating PKA Signaling. Acta Pharm. Sin. B 2021, 11, 112–126.
- 52.
Pan, H.; Lin, Y.; Dou, J.; et al. Wedelolactone Facilitates Ser/Thr Phosphorylation of NLRP3 Dependent on PKA Signalling to Block Inflammasome Activation and Pyroptosis. Cell Prolif 2020, 53, e12868.
- 53.
Witwicka, H.; Kobiałka, M.; Siednienko, J.; et al. Expression and Activity of cGMP-Dependent Phosphodiesterases Is up-Regulated by Lipopolysaccharide (LPS) in Rat Peritoneal Macrophages. Biochim. Biophys. Acta 2007, 1773, 209–218.
- 54.
Gantner, F.; Kupferschmidt, R.; Schudt, C.; et al. In Vitro Differentiation of Human Monocytes to Macrophages: Change of PDE Profile and Its Relationship to Suppression of Tumour Necrosis Factor-Alpha Release by PDE Inhibitors. Br. J. Pharmacol. 1997, 121, 221–231.
- 55.
Down, G.; Siederer, S.; Lim, S.; Daley-Yates, P. Clinical Pharmacology of Cilomilast. Clin. Pharmacokinet. 2006, 45, 217–233.
- 56.
Choi, W.S.; Kang, H.S.; Kim, H.J.; et al. Vinpocetine Alleviates Lung Inflammation via Macrophage Inflammatory Protein-1β Inhibition in an Ovalbumin-Induced Allergic Asthma Model. PLoS ONE 2021, 16, e0251012.
- 57.
Hsu, C.G.; Fazal, F.; Rahman, A.; et al. Phosphodiesterase 10A Is a Key Mediator of Lung Inflammation. J. Immunol. 2021, 206, 3010–3020.
- 58.
Drozdz, M.M.; Doane, A.S.; Alkallas, R.; et al. A Nuclear cAMP Microdomain Suppresses Tumor Growth by Hippo Pathway Inactivation. Cell Rep. 2022, 40, 111412.
- 59.
Nash, C.A.; Wei, W.; Irannejad, R.; et al. Golgi Localized Β1-Adrenergic Receptors Stimulate Golgi PI4P Hydrolysis by PLCε to Regulate Cardiac Hypertrophy. Elife 2019, 8, e48167.
- 60.
Subramaniam, G.; Schleicher, K.; Kovanich, D.; et al. Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy. Circ. Res. 2023, 132, 828–848.
- 61.
Barbagallo, F.; Xu, B.; Reddy, G.R.; et al. Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circ Res 2016, 119, 931–943.
- 62.
Benton, K.C.; Wheeler, D.S.; Kurtoglu, B.; et al. Norepinephrine Activates Β1-Adrenergic Receptors at the Inner Nuclear Membrane in Astrocytes. Glia 2022, 70, 1777–1794.
- 63.
Bobin, P.; Belacel-Ouari, M.; Bedioune, I.; et al. Cyclic Nucleotide Phosphodiesterases in Heart and Vessels: A Therapeutic Perspective. Arch. Cardiovasc. Dis. 2016, 109, 431–443.