2504000181
  • Open Access
  • Review
Adrenergic Regulation of Cardiac Macrophages: Heterogeneity, Plasticity, and Therapeutic Potential
  • Wenjing Xiang †,   
  • Mianli Wang †,   
  • Hualong Yu †,   
  • Haocheng Lu *,   
  • Ying Wang *

Received: 08 Jun 2024 | Revised: 10 Jul 2024 | Accepted: 15 Jul 2024 | Published: 25 Oct 2024

Abstract

Cardiac macrophages play a crucial role in the development and progression of cardiovascular diseases, including myocardial infarction, cardiac hypertrophy, and myocarditis. Macrophages are plastic cells that change their polarization states and functions in response to alterations in the surrounding environment. This process is deeply involved in various biological processes such as inflammation, tissue remodeling and repairing, exacerbating or mitigating the diseases progression. Thus, macrophages have emerged as potential therapeutic targets for multiple cardiac diseases. Upon sympathetic activation, adrenergic/ cyclic adenosine monophosphate (cAMP) signaling axis markedly modulates macrophages polarization and functions. It has been well-established that the intracellular cAMP is highly compartmentalized in cardiomyocytes. However, the spatiotemporal regulation of cAMP in cardiac macrophages and its implications in macrophage-driven cardiac diseases remain to be elucidated. In this review, we focus on the adrenergic/cAMP regulation of macrophage plasticity and function in the heart and discuss potentials and challenges of targeting the adrenergic/cAMP axis for cardiac diseases.

References 

  • 1.
    Yap, J.; Irei, J.; Lozano-Gerona, J.; et al. Macrophages in Cardiac Remodelling after Myocardial Infarction. Nat. Rev. Cardiol. 2023, 20, 373–385.
  • 2.
    Sica, A.; Mantovani, A. Macrophage Plasticity and Polarization: In Vivo Veritas. J. Clin. Investig. 2012, 122, 787–795.
  • 3.
    Epelman, S.; Lavine, K.J.; Beaudin, A.E.; et al. Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity 2014, 40, 91–104.
  • 4.
    Chen, Y.; Hu, M.; Wang, L.; et al. Macrophage M1/M2 Polarization. Eur. J. Pharmacol. 2020, 877, 173090.
  • 5.
    Vadevoo, S.M.P.; Gunassekaran, G.R.; Lee, C.; et al. The Macrophage Odorant Receptor Olfr78 Mediates the Lactate-Induced M2 Phenotype of Tumor-Associated Macrophages. Proc. Natl. Acad. Sci. USA 2021, 118, e2102434118.
  • 6.
    Law, Y.M.; Lal, A.K.; Chen, S.; et al. Diagnosis and Management of Myocarditis in Children: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e123–e135.
  • 7.
    Hua, X.; Hu, G.; Hu, Q.; et al. Single-Cell RNA Sequencing to Dissect the Immunological Network of Autoimmune Myocarditis. Circulation 2020, 142, 384–400.
  • 8.
    Ma, P.; Liu, J.; Qin, J.; et al. Expansion of Pathogenic Cardiac Macrophages in Immune Checkpoint Inhibitor Myocarditis. Circulation 2024, 149, 48–66.
  • 9.
    Lafuse, W.P.; Wozniak, D.J.; Rajaram, M.V.S. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells 2020, 10, 51.
  • 10.
    Dong, J.; Lu, J.; Cen, Z.; et al. Cardiac Macrophages Undergo Dynamic Changes after Coxsackievirus B3 Infection and Promote the Progression of Myocarditis. J. Med. Virol. 2023, 95, e29004.
  • 11.
    Li, K.; Xu, W.; Guo, Q.; et al. Differential Macrophage Polarization in Male and Female BALB/c Mice Infected with Coxsackievirus B3 Defines Susceptibility to Viral Myocarditis. Circ. Res. 2009, 105, 353–364.
  • 12.
    Peet, C.; Ivetic, A.; Bromage, D.I.; et al. Cardiac Monocytes and Macrophages after Myocardial Infarction. Cardiovasc. Res. 2020, 116, 1101–1112.
  • 13.
    Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; et al. Nucleotides Released by Apoptotic Cells Act as a Find-Me Signal to Promote Phagocytic Clearance. Nature 2009, 461, 282–286.
  • 14.
    Gerlach, B.D.; Ampomah, P.B.; Yurdagul, A.; et al. Efferocytosis Induces Macrophage Proliferation to Help Resolve Tissue Injury. Cell Metab. 2021, 33, 2445–2463.e8.
  • 15.
    Doran, A.C.; Yurdagul, A.; Tabas, I. Efferocytosis in Health and Disease. Nat. Rev. Immunol. 2020, 20, 254–267.
  • 16.
    Bajpai, G.; Bredemeyer, A.; Li, W.; et al. Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circ. Res. 2019, 124, 263–278.
  • 17.
    Rizzo, G.; Gropper, J.; Piollet, M.; et al. Dynamics of Monocyte-Derived Macrophage Diversity in Experimental Myocardial Infarction. Cardiovasc. Res. 2023, 119, 772–785.
  • 18.
    Elliott, M.R.; Ravichandran, K.S. The Dynamics of Apoptotic Cell Clearance. Dev. Cell 2016, 38, 147–160.
  • 19.
    Kinchen, J.M.; Ravichandran, K.S. Phagosome Maturation: Going through the Acid Test. Nat. Rev. Mol. Cell Biol. 2008, 9, 781–795.
  • 20.
    Glinton, K.E.; Ma, W.; Lantz, C.; et al. Macrophage-Produced VEGFC Is Induced by Efferocytosis to Ameliorate Cardiac Injury and Inflammation. J. Clin. Investig. 2022, 132, e140685.
  • 21.
    Lavine, K.J.; Epelman, S.; Uchida, K.; et al. Distinct Macrophage Lineages Contribute to Disparate Patterns of Cardiac Recovery and Remodeling in the Neonatal and Adult Heart. Proc. Natl. Acad. Sci. USA 2014, 111, 16029–16034.
  • 22.
    Dick, S.A.; Zaman, R.; Epelman, S. Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Front. Immunol. 2019, 10, 2146.
  • 23.
    Fantin, A.; Vieira, J.M.; Gestri, G.; et al. Tissue Macrophages Act as Cellular Chaperones for Vascular Anastomosis Downstream of VEGF-Mediated Endothelial Tip Cell Induction. Blood 2010, 116, 829–840.
  • 24.
    Aurora, A.B.; Porrello, E.R.; Tan, W.; et al. Macrophages Are Required for Neonatal Heart Regeneration. J. Clin. Investig. 2014, 124, 1382–1392.
  • 25.
    Simões, F.C.; Cahill, T.J.; Kenyon, A.; et al. Macrophages Directly Contribute Collagen to Scar Formation during Zebrafish Heart Regeneration and Mouse Heart Repair. Nat. Commun. 2020, 11, 600.
  • 26.
    Chang, M.Y.; Chan, C.K.; Braun, K.R.; et al. Monocyte-to-Macrophage Differentiation: Synthesis and Secretion of a Complex Extracellular Matrix. J. Biol. Chem. 2012, 287, 14122–14135.
  • 27.
    Liu, B.; Zhang, H.-G.; Zhu, Y.; et al. Cardiac Resident Macrophages Are Involved in Hypoxia‑induced Postnatal Cardiomyocyte Proliferation. Mol Med Rep 2017, 15, 3541–3548.
  • 28.
    Ma, F.; Li, Y.; Jia, L.; et al. Macrophage-Stimulated Cardiac Fibroblast Production of IL-6 Is Essential for TGF β/Smad Activation and Cardiac Fibrosis Induced by Angiotensin II. PLoS ONE 2012, 7, e35144.
  • 29.
    Wang, C.; Zhang, C.; Liu, L.; et al. Macrophage-Derived Mir-155-Containing Exosomes Suppress Fibroblast Proliferation and Promote Fibroblast Inflammation during Cardiac Injury. Mol. Ther. 2017, 25, 192–204.
  • 30.
    Yue, Y.; Huang, S.; Wang, L.; et al. M2b Macrophages Regulate Cardiac Fibroblast Activation and Alleviate Cardiac Fibrosis After Reperfusion Injury. Circ. J. 2020, 84, 626–635.
  • 31.
    Wu, L.; Tai, Y.; Hu, S.; et al. Bidirectional Role of Β2-Adrenergic Receptor in Autoimmune Diseases. Front. Pharmacol. 2018, 9, 1313.
  • 32.
    Fu, Q.; Wang, Y.; Yan, C.; et al. Phosphodiesterase in Heart and Vessels: From Physiology to Diseases. Physiol. Rev. 2024, 104, 765–834.
  • 33.
    Hertz, A.L.; Beavo, J.A. Cyclic Nucleotides and Phosphodiesterases in Monocytic Differentiation. In Phosphodiesterases as Drug Targets; Francis, S.H., Conti, M., Houslay, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 365–390.
  • 34.
    Surdo, N.C.; Berrera, M.; Koschinski, A.; et al. FRET Biosensor Uncovers cAMP Nano-Domains at β-Adrenergic Targets That Dictate Precise Tuning of Cardiac Contractility. Nat. Commun. 2017, 8, 15031.
  • 35.
    Mongillo, M.; Tocchetti, C.G.; Terrin, A.; et al. Compartmentalized Phosphodiesterase-2 Activity Blunts β-Adrenergic Cardiac Inotropy via an NO/cGMP-Dependent Pathway. Circ. Res. 2006, 98, 226–234.
  • 36.
    Xiao, H.; Li, H.; Wang, J.-J.; et al. IL-18 Cleavage Triggers Cardiac Inflammation and Fibrosis upon β-Adrenergic Insult. Eur. Heart J. 2018, 39, 60–69.
  • 37.
    Lyu, J.; Wang, M.; Kang, X.; et al. Macrophage-Mediated Regulation of Catecholamines in Sympathetic Neural Remodeling after Myocardial Infarction. Basic Res. Cardiol. 2020, 115, 56.
  • 38.
    Petkevicius, K.; Bidault, G.; Virtue, S.; et al. Norepinephrine Promotes Triglyceride Storage in Macrophages via Beta2-Adrenergic Receptor Activation. FASEB J. 2021, 35, e21266.
  • 39.
    Liu, W.; Chen, W.; Xie, M.; et al. Traumatic Brain Injury Stimulates Sympathetic Tone-Mediated Bone Marrow Myelopoiesis to Favor Fracture Healing. Signal Transduct. Target. Ther. 2023, 8, 260.
  • 40.
    Ulleryd, M.A.; Bernberg, E.; Yang, L.J.; et al. Metoprolol Reduces Proinflammatory Cytokines and Atherosclerosis in ApoE-/- Mice. BioMed Res. Int. 2014, 2014, e548783.
  • 41.
    Clemente-Moragón, A.; Gomez, M.; Villena-Gutierrez, R.; et al. Metoprolol Exerts a Non-Class Effect against Ischaemia-Reperfusion Injury by Abrogating Exacerbated Inflammation. Eur. Heart J. 2020, 41, 4425–4440.
  • 42.
    Toyoda, S.; Haruyama, A.; Inami, S.; et al. Effects of Carvedilol vs Bisoprolol on Inflammation and Oxidative Stress in Patients with Chronic Heart Failure. J. Cardiol. 2020, 75, 140–147.
  • 43.
    Feuerstein, G.Z.; Ruffolo, R.R. Carvedilol, a Novel Multiple Action Antihypertensive Agent with Antioxidant Activity and the Potential for Myocardial and Vascular Protection. Eur. Heart J. 1995, 16 SupplF, 38–42.
  • 44.
    Zhang, J.; Jiang, P.; Sheng, L.; et al. A Novel Mechanism of Carvedilol Efficacy for Rosacea Treatment: Toll-Like Receptor 2 Inhibition in Macrophages. Front. Immunol. 2021, 12, 609615.
  • 45.
    Cimmino, G.; Ibanez, B.; Giannarelli, C.; et al. Carvedilol Administration in Acute Myocardial Infarction Results in Stronger Inhibition of Early Markers of Left Ventricular Remodeling than Metoprolol. Int. J. Cardiol. 2011, 153, 256–261.
  • 46.
    Udelson, J.E. Ventricular Remodeling in Heart Failure and the Effect of Beta-Blockade. Am. J. Cardiol. 2004, 93, 43–48.
  • 47.
    Apaydin, O.; Altaikyzy, A.; Filosa, A.; et al. Alpha-1 Adrenergic Signaling Drives Cardiac Regeneration via Extracellular Matrix Remodeling Transcriptional Program in Zebrafish Macrophages. Dev. Cell 2023, 58, 2460–2476.
  • 48.
    Bystrom, J.; Evans, I.; Newson, J.; et al. Resolution-Phase Macrophages Possess a Unique Inflammatory Phenotype That Is Controlled by cAMP. Blood 2008, 112, 4117–4127.
  • 49.
    Lima, K.M.; Vago, J.P.; Caux, T.R.; et al. The Resolution of Acute Inflammation Induced by Cyclic AMP Is Dependent on Annexin A1. J. Biol. Chem. 2017, 292, 13758–13773.
  • 50.
    Jiang, H.; Wei, H.; Wang, H.; et al. Zeb1-Induced Metabolic Reprogramming of Glycolysis Is Essential for Macrophage Polarization in Breast Cancer. Cell Death Dis. 2022, 13, 206.
  • 51.
    Ye, J.; Zeng, B.; Zhong, M.; et al. Scutellarin Inhibits Caspase-11 Activation and Pyroptosis in Macrophages via Regulating PKA Signaling. Acta Pharm. Sin. B 2021, 11, 112–126.
  • 52.
    Pan, H.; Lin, Y.; Dou, J.; et al. Wedelolactone Facilitates Ser/Thr Phosphorylation of NLRP3 Dependent on PKA Signalling to Block Inflammasome Activation and Pyroptosis. Cell Prolif 2020, 53, e12868.
  • 53.
    Witwicka, H.; Kobiałka, M.; Siednienko, J.; et al. Expression and Activity of cGMP-Dependent Phosphodiesterases Is up-Regulated by Lipopolysaccharide (LPS) in Rat Peritoneal Macrophages. Biochim. Biophys. Acta 2007, 1773, 209–218.
  • 54.
    Gantner, F.; Kupferschmidt, R.; Schudt, C.; et al. In Vitro Differentiation of Human Monocytes to Macrophages: Change of PDE Profile and Its Relationship to Suppression of Tumour Necrosis Factor-Alpha Release by PDE Inhibitors. Br. J. Pharmacol. 1997, 121, 221–231.
  • 55.
    Down, G.; Siederer, S.; Lim, S.; Daley-Yates, P. Clinical Pharmacology of Cilomilast. Clin. Pharmacokinet. 2006, 45, 217–233.
  • 56.
    Choi, W.S.; Kang, H.S.; Kim, H.J.; et al. Vinpocetine Alleviates Lung Inflammation via Macrophage Inflammatory Protein-1β Inhibition in an Ovalbumin-Induced Allergic Asthma Model. PLoS ONE 2021, 16, e0251012.
  • 57.
    Hsu, C.G.; Fazal, F.; Rahman, A.; et al. Phosphodiesterase 10A Is a Key Mediator of Lung Inflammation. J. Immunol. 2021, 206, 3010–3020.
  • 58.
    Drozdz, M.M.; Doane, A.S.; Alkallas, R.; et al. A Nuclear cAMP Microdomain Suppresses Tumor Growth by Hippo Pathway Inactivation. Cell Rep. 2022, 40, 111412.
  • 59.
    Nash, C.A.; Wei, W.; Irannejad, R.; et al. Golgi Localized Β1-Adrenergic Receptors Stimulate Golgi PI4P Hydrolysis by PLCε to Regulate Cardiac Hypertrophy. Elife 2019, 8, e48167.
  • 60.
    Subramaniam, G.; Schleicher, K.; Kovanich, D.; et al. Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy. Circ. Res. 2023, 132, 828–848.
  • 61.
    Barbagallo, F.; Xu, B.; Reddy, G.R.; et al. Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circ Res 2016, 119, 931–943.
  • 62.
    Benton, K.C.; Wheeler, D.S.; Kurtoglu, B.; et al. Norepinephrine Activates Β1-Adrenergic Receptors at the Inner Nuclear Membrane in Astrocytes. Glia 2022, 70, 1777–1794.
  • 63.
    Bobin, P.; Belacel-Ouari, M.; Bedioune, I.; et al. Cyclic Nucleotide Phosphodiesterases in Heart and Vessels: A Therapeutic Perspective. Arch. Cardiovasc. Dis. 2016, 109, 431–443.
Share this article:
How to Cite
Xiang, W.; Wang, M.; Yu, H.; Lu, H.; Wang, Y. Adrenergic Regulation of Cardiac Macrophages: Heterogeneity, Plasticity, and Therapeutic Potential. International Journal of Drug Discovery and Pharmacology 2024, 3 (4), 100020. https://doi.org/10.53941/ijddp.2024.100020.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.