- 1.
- 2.
Yang, X.F.; Mirkovic, D.; Zhang, S.; et al. Processing sites are different in the generation of HLA-A2.1-restricted, T cell reactive tumor antigen epitopes and viral epitopes. Int. J. Immunopathol. Pharmacol. 2006, 19, 853–870.
https://doi.org/10.1177/039463200601900415.
- 3.
Yan, Y.; Phan, L.; Yang, F.; et al. A novel mechanism of alternative promoter and splicing regulates the epitope generation of tumor antigen CML66-L. J. Immunol. 2004, 172, 651–660.
- 4.
Yan, Y.; Chen, Y.; Yang, F.; et al. LA-A2.1-restricted T cells react to SEREX-defined tumor antigen CML66L and are suppressed by CD4+CD25+ regulatory T cells. Int. J. Immunopathol. Pharmacol. 2007, 20, 75–89.
https://doi.org/10.1177/039463200702000109.
- 5.
Yang, X.F.; Wu, C.J.; Chen, L.; et al. CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res. 2002, 62, 5517–5522.
- 6.
Yang, X.F.; Wu, C.J.; McLaughlin, S.; et al. CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA. 2001, 98, 7492–7497.
https://doi.org/10.1073/pnas.131590998.
- 7.
Xiong, Z.; Liu, E.; Yan, Y.; et al. An unconventional antigen translated by a novel internal ribosome entry site elicits antitumor humoral immune reactions. J. Immunol. 2006, 177, 4907–4916.
https://doi.org/10.4049/jimmunol.177.7.4907.
- 8.
Xiong, Z.; Liu, E.; Yan, Y.; et al. A novel unconventional antigen MPD5 elicits anti-tumor humoral immune responses in a subset of patients with polycythemia vera. Int. J. Immunopathol. Pharmacol. 2007, 20, 373–380.
https://doi.org/10.1177/039463200702000218.
- 9.
Xiong, Z.; Song, J.; Yan, Y.; et al. Higher expression of Bax in regulatory T cells increases vascular inflammation. Front. Biosci. 2008, 13, 7143–7155.
https://doi.org/10.2741/3217.
- 10.
Xiong, Z.; Yan, Y.; Liu, E.; et al. Novel tumor antigens elicit anti-tumor humoral immune reactions in a subset of patients with polycythemia vera. Clin. Immunol. 2007, 122, 279–287.
https://doi.org/10.1016/j.clim.2006.10.006.
- 11.
Yang, F.; Chen, I.H.; Xiong, Z.; et al. Model of stimulation-responsive splicing and strategies in identification of immunogenic isoforms of tumor antigens and autoantigens. Clin. Immunol. 2006, 121, 121–133.
https://doi.org/10.1016/j.clim.2006.06.007.
- 12.
Yang, F.; Yang X.F.New concepts in tumor antigens: Their significance in future immunotherapies for tumors. Cell Mol. Immunol.2005, 2, 331–341.
- 13.
Yin, Y.; Li, X.; Sha, X.; et al. Early hyperlipidemia promotes endothelial activation via a caspase-1-sirtuin 1 pathway. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 804–816.
https://doi.org/10.1161/ATVBAHA.115.305282.
- 14.
Yin, Y.; Pastrana, J.L.; Li, X.; et al. Inflammasomes: Sensors of metabolic stresses for vascular inflammation. Front. Biosci. 2013, 18, 638–649.
- 15.
Yin, Y.; Yan, Y.; Jiang, X.; et al. Inflammasomes are differentially expressed in cardiovascular and other tissues. Int. J. Immunopathol. Pharmacol. 2009, 22, 311–322.
https://doi.org/10.1177/039463200902200208.
- 16.
- 17.
- 18.
Xu, K.; Saaoud, F.; Shao, Y.; et al. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol. 2023, 64, 102771.
https://doi.org/10.1016/j.redox.2023.102771.
- 19.
Drummer, C.I.V.; Saaoud, F.; Sun, Y.; et al. Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. J. Immunol. Res. 2021, 2021, 3928323.
https://doi.org/10.1155/2021/3928323.
- 20.
Wang, H.; Yoshizumi, M.; Lai, K.; et al. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J. Biol. Chem. 1997, 272, 25380–25385.
https://doi.org/10.1074/jbc.272.40.25380.
- 21.
- 22.
Shen, H.; Wu, N.; Nanayakkara, G.; et al. Co-signaling receptors regulate T-cell plasticity and immune tolerance. Front. Biosci. 2019, 24, 96–132.
- 23.
Lai, B.; Wang, J.; Fagenson, A.; et al. Twenty Novel Disease Group-Specific and 12 New Shared Macrophage Pathways in Eight Groups of 34 Diseases Including 24 Inflammatory Organ Diseases and 10 Types of Tumors. Front. Immunol. 2019, 10, 2612.
https://doi.org/10.3389/fimmu.2019.02612.
- 24.
- 25.
Yan, J.; Chen, G.; Gong, J.; et al. Upregulation of OX40-OX40 ligand system on T lymphocytes in patients with acute coronary syndromes. J. Cardiovasc. Pharmacol. 2009, 54, 451–455.
https://doi.org/10.1097/FJC.0b013e3181be7578.
- 26.
Zhang, Q.H.; Yin, R.X.; Chen, W.X.; et al. Association between the TIMD4-HAVCR1 variants and serum lipid levels, coronary heart disease and ischemic stroke risk and atorvastatin lipid-lowering efficacy. Biosci. Rep. 2018, 38, BSR20171058
https://doi.org/10.1042/BSR20171058.
- 27.
- 28.
- 29.
Piras, L.; Zuccanti, M.; Russo, P.; et al. Association between Immune Checkpoint Inhibitors and Atherosclerotic Cardiovascular Disease Risk: Another Brick in the Wall. Int. J. Mol. Sci. 2024, 25, 2502.
https://doi.org/10.3390/ijms25052502.
- 30.
Achim, A.; Liblik, K.; Gevaert S.Immune checkpoint inhibitors—The revolutionary cancer immunotherapy comes with a cardiotoxic price. Trends Cardiovasc. Med. 2024, 34, 71–77.
https://doi.org/10.1016/j.tcm.2022.09.004.
- 31.
Shao, Y.; Saaoud, F.; Xu, K.; et al. Cardiovascular Disease Risk Factors. Immune Checkpoints and Tregs. In Environmental Factors in the Pathogenesis of Cardiovascular Diseases, Agrawal, D., Ed.; Springer: Cham, Switzerland, 2024; Volume 30, pp. 51–93.
- 32.
Simons, K.H.; de Jong, A.; Jukema, J.W.; et al. T cell co-stimulation and co-inhibition in cardiovascular disease: A double-edged sword. Nat. Rev. Cardiol. 2019, 16, 325–343.
https://doi.org/10.1038/s41569-019-0164-7.
- 33.
Yang, X.F.; Yin, Y.; Wang H.Vascular inflammation and atherogenesis are activated via receptors for pamps and suppressed by regulatory T cells. Drug Discov. Today Ther. Strateg. 2008, 5, 125–142.
https://doi.org/10.1016/j.ddstr.2008.11.003.
- 34.
- 35.
Simons, K.H.; Peters, H.; Arens, R.; et al. P188Co-stimulation dependent CD8 T cell activation protects vein graft disease. Cardiovasc. Res. 2018, 114, S50.
https://doi.org/10.1093/cvr/cvy060.145.
- 36.
Furukawa, Y.; Mandelbrot, D.A.; Libby, P.; et al. Association of B7-1 co-stimulation with the development of graft arterial disease. Studies using mice lacking B7-1, B7-2, or B7-1/B7-2. Am. J. Pathol. 2000, 157, 473–484.
https://doi.org/10.1016/S0002-9440(10)64559-2.
- 37.
Buono, C.; Pang, H.; Uchida, Y.; et al. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 2004, 109, 2009–2015.
https://doi.org/10.1161/01.CIR.0000127121.16815.F1.
- 38.
Matsumoto, T.; Sasaki, N.; Yamashita, T.; et al. Overexpression of Cytotoxic T-Lymphocyte-Associated Antigen-4 Prevents Atherosclerosis in Mice. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1141–1151.
https://doi.org/10.1161/ATVBAHA.115.306848.
- 39.
Bu, D.X.; Tarrio, M.; Maganto-Garcia, E.; et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1100–1107.
https://doi.org/10.1161/ATVBAHA.111.224709.
- 40.
Gotsman, I.; Grabie, N.; Dacosta, R.; et al. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Invest. 2007, 117, 2974–2982.
https://doi.org/10.1172/JCI31344.
- 41.
Tarrio, M.L.; Grabie, N.; Bu, D.X.; et al. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J. Immunol. 2012, 188, 4876–4884.
https://doi.org/10.4049/jimmunol.1200389.
- 42.
Okazaki, T.; Tanaka, Y.; Nishio, R.; et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 2003, 9, 1477–1483.
https://doi.org/10.1038/nm955.
- 43.
Kallikourdis, M.; Martini, E.; Carullo, P.; et al. T cell costimulation blockade blunts pressure overload-induced heart failure. Nat. Commun. 2017, 8, 14680.
https://doi.org/10.1038/ncomms14680.
- 44.
Ridker, P.M.; Everett, B.M.; Thuren, T.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131.
https://doi.org/10.1056/NEJMoa1707914.
- 45.
Shao, Y.; Yang, W.Y.; Saaoud, F.; et al. IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCI Insight 2021, 6, 152511.
https://doi.org/10.1172/jci.insight.152511.
- 46.
Russell, M.E.; Hancock, W.W.; Akalin, E.; et al. Chronic cardiac rejection in the LEW to F344 rat model. Blockade of CD28-B7 costimulation by CTLA4Ig modulates T cell and macrophage activation and attenuates arteriosclerosis. J. Clin. Investig. 1996, 97, 833–838.
https://doi.org/10.1172/JCI118483.
- 47.
Hancock, W.W.; Sayegh, M.H.; Zheng, X.G.; et al. Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. Proc. Natl. Acad. Sci. USA 1996, 93, 13967–13972.
https://doi.org/10.1073/pnas.93.24.13967.
- 48.
Kim, K.S.; Denton, M.D.; Chandraker, A.; et al. CD28-B7-mediated T cell costimulation in chronic cardiac allograft rejection: Differential role of B7-1 in initiation versus progression of graft arteriosclerosis. Am. J. Pathol. 2001, 158, 977–986.
https://doi.org/10.1016/S0002-9440(10)64044-8.
- 49.
Xu, K.; Yang, W.Y.; Nanayakkara, G.K.; et al. GATA3, HDAC6, and BCL6 Regulate FOXP3+ Treg Plasticity and Determine Treg Conversion into Either Novel Antigen-Presenting Cell-Like Treg or Th1-Treg. Front. Immunol. 2018, 9, 45.
https://doi.org/10.3389/fimmu.2018.00045.
- 50.
- 51.
Ni, D.; Tang, T.; Lu, Y.; et al. Canonical Secretomes, Innate Immune Caspase-1-, 4/11-Gasdermin D Non-Canonical Secretomes and Exosomes May Contribute to Maintain Treg-Ness for Treg Immunosuppression, Tissue Repair and Modulate Anti-Tumor Immunity via ROS Pathways. Front. Immunol. 2021, 12, 678201.
https://doi.org/10.3389/fimmu.2021.678201.
- 52.
Zhang, R.; Xu, K.; Shao, Y.; et al. Tissue Treg Secretomes and Transcription Factors Shared With Stem Cells Contribute to a Treg Niche to Maintain Treg-Ness With 80% Innate Immune Pathways, and Functions of Immunosuppression and Tissue Repair. Front. Immunol. 2020, 11, 632239.
https://doi.org/10.3389/fimmu.2020.632239.
- 53.
Drummer, C.; Saaoud, F.; Jhala, N.C.; et al. Caspase-11 promotes high-fat diet-induced NAFLD by increasing glycolysis, OXPHOS, and pyroptosis in macrophages. Front. Immunol. 2023, 14, 1113883.
https://doi.org/10.3389/fimmu.2023.1113883.
- 54.
Drummer, C.; Saaoud, F.; Shao, Y.; et al. Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1032–1046.
https://doi.org/10.1161/ATVBAHA.120.315452.
- 55.
Liu, M.; Wu, N.; Xu, K.; et al. Organelle Crosstalk Regulators Are Regulated in Diseases, Tumors, and Regulatory T Cells: Novel Classification of Organelle Crosstalk Regulators. Front. Cardiovasc. Med. 2021, 8, 713170.
https://doi.org/10.3389/fcvm.2021.713170.
- 56.
- 57.
Mai, J.; Nanayakkara, G.; Lopez-Pastrana, J.; et al. Interleukin-17A Promotes Aortic Endothelial Cell Activation via Transcriptionally and Post-translationally Activating p38 MAPK Pathway. J. Biol. Chem. 2016, 291, 4939–4954.
https://doi.org/10.1074/jbc.M115.690081.
- 58.
- 59.
Lu, Y.; Sun, Y.; Xu, K.; et al. Aorta in Pathologies May Function as an Immune Organ by Upregulating Secretomes for Immune and Vascular Cell Activation, Differentiation and Trans-Differentiation-Early Secretomes may Serve as Drivers for Trained Immunity. Front. Immunol. 2022, 13, 858256.
https://doi.org/10.3389/fimmu.2022.858256.
- 60.
Monroy, M.A.; Fang, J.; Li, S.; et al. Chronic kidney disease alters vascular smooth muscle cell phenotype. Front. Biosci. 2015, 20, 784–795.
https://doi.org/10.2741/4337.
- 61.
Yang, X.F.; Weber, G.F.; Cantor H.A novel Bcl-x isoform connected to the T cell receptor regulates apoptosis in T cells. Immunity 1997, 7, 629–639.
- 62.
Yang, X.F.; Ye, Q.; Press, B.; et al. Analysis of the complex genomic structure of Bcl-x and its relationship to Bcl-x(gamma) expression after CD28-dependent costimulation. Mol. Immunol. 2002, 39, 45–55.
https://doi.org/10.1016/s0161-5890(02)00049-4.
- 63.
Yang, Y.; Xiong, Z.; Zhang, S.; et al. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem. J. 2005, 392, 135–143.
https://doi.org/10.1042/BJ20050698.
- 64.
Yang, Y.; Yang, F.; Xiong, Z.; et al. An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 2005, 24, 4778–4788.
https://doi.org/10.1038/sj.onc.1208666.
- 65.
Kuske, M.; Haist, M.; Jung, T.; et al. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers 2022, 14, 1710.
https://doi.org/10.3390/cancers14071710.
- 66.
- 67.
Suero-Abreu, G.A.; Zanni, M.V.; Neilan T.G.Atherosclerosis With Immune Checkpoint Inhibitor Therapy: Evidence, Diagnosis, and Management: JACC: CardioOncology State-of-the-Art Review. JACC Cardio Oncol 2022, 4, 598–615.
https://doi.org/10.1016/j.jaccao.2022.11.011.
- 68.
Dai, J.; Fang, P.; Saredy, J.; et al. Metabolism-associated danger signal-induced immune response and reverse immune checkpoint-activated CD40(+) monocyte differentiation. J. Hematol. Oncol. 2017, 10, 141.
https://doi.org/10.1186/s13045-017-0504-1.
- 69.
- 70.
Soundararajan, R.; Fradette, J.J.; Konen, J.M.; et al. Targeting the Interplay between Epithelial-to-Mesenchymal-Transition and the Immune System for Effective Immunotherapy. Cancers 2019, 11, 714.
https://doi.org/10.3390/cancers11050714.
- 71.
Yap, C.; Mieremet, A.; de Vries, C.J.M.; et al. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Kruppel-Like Factor 4). Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2693–2707.
https://doi.org/10.1161/ATVBAHA.121.316600.
- 72.
Lu, Y.; Sun, Y.; Saaoud, F.; et al. ER stress mediates Angiotensin II-augmented innate immunity memory and facilitates distinct susceptibilities of thoracic from abdominal aorta to aneurysm development. Front. Immunol. 2023, 14, 1268916.
https://doi.org/10.3389/fimmu.2023.1268916.
- 73.
Kovacic, J.C.; Dimmeler, S.; Harvey, R.P.; et al. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 190–209.
https://doi.org/10.1016/j.jacc.2018.09.089.
- 74.
Meng, L.; Wu, H.; Wu, J.; et al. Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 2024, 15, 3.
https://doi.org/10.1038/s41419-023-06389-5.
- 75.
- 76.
- 77.
- 78.
Zhang, R.; Saredy, J.; Shao, Y.; et al. End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs—A novel multiple-hit model for disease progression. Redox Biol. 2020, 34, 101460.
https://doi.org/10.1016/j.redox.2020.101460.
- 79.
Yang, X.F.; Chatellard, C.; Lazure, C.; et al. of hydrophilic amino acid residues in the signal peptide/membrane anchor domain of neprilysin (neutral endopeptidase-24.11) results in its cleavage: Role of the position of insertion. Arch. Biochem. Biophys. 1994, 315, 382–386.
https://doi.org/10.1006/abbi.1994.1514.
- 80.
Yang, X.F.; Crine, P.; Boileau G.The nature of topogenic sequences determines the transport competence of topological mutants of neutral endopeptidase-24.11. Biochem. J. 1995, 312, 99–105.
https://doi.org/10.1042/bj3120099.
- 81.
Liu, S.; Xiong, X.; Thomas, S.V.; et al. Analysis for Carom complex, signaling and function by database mining. Front. Biosci. 2016, 21, 856–872.
https://doi.org/10.2741/4424.
- 82.
- 83.
- 84.
Lu, Y.; Sun, Y.; Drummer, C.; et al. Increased acetylation of H3K14 in the genomic regions that encode trained immunity enzymes in lysophosphatidylcholine-activated human aortic endothelial cells—Novel qualification markers for chronic disease risk factors and conditional DAMPs. Redox Biol. 2019, 24, 101221.
https://doi.org/10.1016/j.redox.2019.101221.
- 85.
Li, X.; Fang, P.; Sun, Y.; et al. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biol. 2020, 28, 101373.
https://doi.org/10.1016/j.redox.2019.101373.
- 86.
Saaoud, F.; Liu, L.; Xu, K.; et al. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023, 8, 158183.
https://doi.org/10.1172/jci.insight.158183.
- 87.
Fagenson, A.M.; Xu, K.; Saaoud, F.; et al. Liver Ischemia Reperfusion Injury, Enhanced by Trained Immunity, Is Attenuated in Caspase 1/Caspase 11 Double Gene Knockout Mice. Pathogens 2020, 9, 879.
https://doi.org/10.3390/pathogens9110879.
- 88.
- 89.
Man, K.; Miasari, M.; Shi, W.; et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 2013, 14, 1155–1165.
https://doi.org/10.1038/ni.2710.
- 90.
Shi, L.Z.; Wang, R.; Huang, G.; et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011, 208, 1367–1376.
https://doi.org/10.1084/jem.20110278.
- 91.
Seijkens, T.T.P.; van Tiel, C.M.; Kusters, P.J.H.; et al. Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. J. Am. Coll. Cardiol. 2018, 71, 527–542.
https://doi.org/10.1016/j.jacc.2017.11.055.
- 92.
Chatzigeorgiou, A.; Seijkens, T.; Zarzycka, B.; et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc. Natl. Acad. Sci. USA 2014, 111, 2686–2691.
https://doi.org/10.1073/pnas.1400419111.
- 93.
Ewing, M.M.; Karper, J.C.; Abdul, S.; et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int. J. Cardiol. 2013, 168, 1965–1974.
https://doi.org/10.1016/j.ijcard.2012.12.085.
- 94.
Ma, K.; Lv, S.; Liu, B.; et al. CTLA4-IgG ameliorates homocysteine-accelerated atherosclerosis by inhibiting T-cell overactivation in apoE(-/-) mice. Cardiovasc. Res. 2013, 97, 349–359.
https://doi.org/10.1093/cvr/cvs330.
- 95.
- 96.
- 97.
Shao, Y.; Saredy, J.; Xu, K.; et al. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front. Immunol. 2021, 12, 653110.
https://doi.org/10.3389/fimmu.2021.653110.
- 98.
Li, X.; Wang, L.; Fang, P.; et al. Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. J. Biol. Chem. 2018, 293, 11033–11045.
https://doi.org/10.1074/jbc.RA118.002752.
- 99.
Sun, Y.; Lu, Y.; Liu, L.; et al. Caspase-4/11 promotes hyperlipidemia and chronic kidney disease-accelerated vascular inflammation by enhancing trained immunity. JCI Insight 2024, 9, 177229.
https://doi.org/10.1172/jci.insight.177229.
- 100.
He, S.; Li, M.; Ma, X.; et al. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2621–2630.
https://doi.org/10.1161/ATVBAHA.110.210492.
- 101.
Xu, K.; Shao, Y.; Saaoud, F.; et al. Novel Knowledge-Based Transcriptomic Profiling of Lipid Lysophosphatidylinositol-Induced Endothelial Cell Activation. Front. Cardiovasc. Med. 2021, 8, 773473.
https://doi.org/10.3389/fcvm.2021.773473.
- 102.
- 103.
- 104.
- 105.
Cochain, C.; Chaudhari, S.M.; Koch, M.; et al. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE 2014, 9, e93280.
https://doi.org/10.1371/journal.pone.0093280.
- 106.
Yang, Q.; Saaoud, F.; Lu, Y.; et al. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front. Immunol. 2023, 14, 1348238.
https://doi.org/10.3389/fimmu.2023.1348238.
- 107.
Schiller, N.K.; Kubo, N.; Boisvert, W.A.; et al. Effect of gamma-irradiation and bone marrow transplantation on atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1674–1680.
https://doi.org/10.1161/hq1001.096724.
- 108.
- 109.
Kumagai, S.; Togashi, Y.; Kamada, T.; et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 2020, 21, 1346–1358.
https://doi.org/10.1038/s41590-020-0769-3.
- 110.
Kamada, T.; Togashi, Y.; Tay, C.; et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 9999–10008.
https://doi.org/10.1073/pnas.1822001116.
- 111.
Ait-Oufella, H.; Salomon, B.L.; Potteaux, S.; et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006, 12, 178–180.
- 112.
- 113.
Francisco, L.M.; Salinas, V.H.; Brown, K.E.; et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009, 206, 3015–3029.
https://doi.org/10.1084/jem.20090847.
- 114.
Yang, Q.; Nanayakkara, G.K.; Drummer, C.; et al. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking. Front. Physiol. 2017, 8, 818.
https://doi.org/10.3389/fphys.2017.00818.
- 115.
- 116.
Hayashi, T.; Sasaki, N.; Yamashita, T.; et al. Ultraviolet B Exposure Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Expanding CD4(+)Foxp3(+) Regulatory T Cells. J. Am. Heart Assoc. 2017, 6, e007024.
https://doi.org/10.1161/JAHA.117.007024.
- 117.
Sugiura, D.; Maruhashi, T.; Okazaki, I.M.; et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 2019, 364, 558–566.
https://doi.org/10.1126/science.aav7062.
- 118.
Zhao, Y.; Lee, C.K.; Lin, C.H.; et al. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity 2019, 51, 1059–1073.
https://doi.org/10.1016/j.immuni.2019.11.003.
- 119.
Tekguc, M.; Wing, J.B.; Osaki, M.; et al. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2023739118.
https://doi.org/10.1073/pnas.2023739118.
- 120.
- 121.
Sun, P.; Zhang, L.; Gu, Y.; et al. Immune checkpoint programmed death-1 mediates abdominal aortic aneurysm and pseudoaneurysm progression. Biomed. Pharmacother. 2021, 142, 111955.
https://doi.org/10.1016/j.biopha.2021.111955.
- 122.
- 123.
Levin, S.D.; Taft, D.W.; Brandt, C.S.; et al. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur. J. Immunol. 2011, 41, 902–915.
https://doi.org/10.1002/eji.201041136.
- 124.
- 125.
Kurtulus, S.; Sakuishi, K.; Ngiow, S.F.; et al. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Investig. 2015, 125, 4053–4062.
https://doi.org/10.1172/JCI81187.
- 126.
- 127.
- 128.
Joller, N.; Lozano, E.; Burkett, P.R.; et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014, 40, 569–581.
https://doi.org/10.1016/j.immuni.2014.02.012.
- 129.
Foks, A.C.; Ran, I.A.; Frodermann, V.; et al. Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development. PLoS ONE 2013, 8, e83134.
https://doi.org/10.1371/journal.pone.0083134.
- 130.
Butcher, M.J.; Filipowicz, A.R.; Waseem, T.C.; et al. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNgamma+ Th1/Tregs. Circ. Res. 2016, 119, 1190–1203.
https://doi.org/10.1161/CIRCRESAHA.116.309764.
- 131.
Fuhrman, C.A.; Yeh, W.I.; Seay, H.R.; et al. Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226. J. Immunol. 2015, 195, 145–155.
https://doi.org/10.4049/jimmunol.1402381.
- 132.
Thornton, A.M.; Lu, J.; Korty, P.E.; et al. Helios(+) and Helios(-) Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires. Eur. J. Immunol. 2019, 49, 398–412.
https://doi.org/10.1002/eji.201847935.
- 133.
- 134.
- 135.
- 136.
Jin, H.S.; Park Y.Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy. BMB Rep. 2021, 54, 2–11.
- 137.
Zhao, T.V.; Hu, Z.; Ohtsuki, S.; et al. Hyperactivity of the CD155 immune checkpoint suppresses anti-viral immunity in patients with coronary artery disease. Nat. Cardiovasc. Res. 2022, 1, 634–648.
https://doi.org/10.1038/s44161-022-00096-8.
- 138.
- 139.
Monney, L.; Sabatos, C.A.; Gaglia, J.L.; et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002, 415, 536–541.
https://doi.org/10.1038/415536a.
- 140.
- 141.
- 142.
Foks, A.C.; Ran, I.A.; Wasserman, L.; et al. T-cell immunoglobulin and mucin domain 3 acts as a negative regulator of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2558–2565.
https://doi.org/10.1161/ATVBAHA.113.301879.
- 143.
- 144.
Chiba, S.; Baghdadi, M.; Akiba, H.; et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 2012, 13, 832–842.
https://doi.org/10.1038/ni.2376.
- 145.
- 146.
- 147.
Sun, Y.; Lu, Y.; Saredy, J.; et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020, 37, 101696.
- 148.
Li, X.; Fang, P.; Li, Y.; et al. Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1090–1100.
https://doi.org/10.1161/ATVBAHA.115.306964.
- 149.
Li, X.; Fang, P.; Yang, W.Y.; et al. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can. J. Physiol. Pharmacol. 2017, 95, 247–252.
https://doi.org/10.1139/cjpp-2016-0515.
- 150.
Li, X.; Shao, Y.; Sha, X.; et al. IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 599–609.
https://doi.org/10.1161/ATVBAHA.117.310626.
- 151.
Nanayakkara, G.K.; Wang, H.; Yang X.Proton leak regulates mitochondrial reactive oxygen species generation in endothelial cell activation and inflammation—A novel concept. Arch. Biochem. Biophys. 2019, 662, 68–74.
https://doi.org/10.1016/j.abb.2018.12.002.
- 152.
Boytard, L.; Hadi, T.; Silvestro, M.; et al. Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nat. Commun. 2020, 11, 4311.
https://doi.org/10.1038/s41467-020-18088-2.
- 153.
Sharma, A.K.; Salmon, M.D.; Lu, G.; et al. Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 908–918.
https://doi.org/10.1161/ATVBAHA.116.307373.
- 154.
Chou, E.L.; Chaffin, M.; Simonson, B.; et al. Aortic Cellular Diversity and Quantitative Genome-Wide Association Study Trait Prioritization Through Single-Nuclear RNA Sequencing of the Aneurysmal Human Aorta. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 1355–1374.
https://doi.org/10.1161/ATVBAHA.122.317953.
- 155.
- 156.
Tieu, R.; Amancha, P.K.; Villinger, F.; et al. TIM-3, a Possible Target for Immunotherapy in Cancer and Chronic Viral Infections. Austin Virol. Retro Virol. 2014, 1, 6.
- 157.
- 158.
- 159.
- 160.
- 161.
Chen, S.S.; Sun, L.W.; Brickner, H.; et al. Downregulating galectin-3 inhibits proinflammatory cytokine production by human monocyte-derived dendritic cells via RNA interference. Cell Immunol. 2015, 294, 44–53.
https://doi.org/10.1016/j.cellimm.2015.01.017.
- 162.
- 163.
Nachtigal, M.; Al-Assaad, Z.; Mayer, E.P.; et al. Galectin-3 expression in human atherosclerotic lesions. Am. J. Pathol. 1998, 152, 1199–1208.
- 164.
MacKinnon, A.C.; Liu, X.; Hadoke, P.W.; et al. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology 2013, 23, 654–663.
https://doi.org/10.1093/glycob/cwt006.
- 165.
Sharma, U.C.; Pokharel, S.; van Brakel, T.J.; et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 2004, 110, 3121–3128.
https://doi.org/10.1161/01.CIR.0000147181.65298.4D.
- 166.
Ho, J.E.; Liu, C.; Lyass, A.; et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J. Am. Coll. Cardiol. 2012, 60, 1249–1256.
https://doi.org/10.1016/j.jacc.2012.04.053.
- 167.
Gullestad, L.; Ueland, T.; Kjekshus, J.; et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur. Heart J. 2012, 33, 2290–2296.
https://doi.org/10.1093/eurheartj/ehs077.
- 168.
Tsai, T.H.; Sung, P.H.; Chang, L.T.; et al. Value and level of galectin-3 in acute myocardial infarction patients undergoing primary percutaneous coronary intervention. J. Atheroscler. Thromb. 2012, 19, 1073–1082.
https://doi.org/10.5551/jat.12856.
- 169.
- 170.
Fernandez-Garcia, C.E.; Tarin, C.; Roldan-Montero, R.; et al. Increased galectin-3 levels are associated with abdominal aortic aneurysm progression and inhibition of galectin-3 decreases elastase-induced AAA development. Clin Sci (Lond) 2017, 131, 2707–2719.
https://doi.org/10.1042/CS20171142.
- 171.
Menini, S.; Iacobini, C.; Ricci, C.; et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc. Res. 2013, 100, 472–480.
https://doi.org/10.1093/cvr/cvt206.
- 172.
- 173.
Liu, X.; Pu, Y.; Cron, K.; et al. CD47 blockade triggers T cell–mediated destruction of immunogenic tumors. Nat. Med. 2015, 21, 1209–1215.
https://doi.org/10.1038/nm.3931.
- 174.
Brooke, G.; Holbrook, J.D.; Brown, M.H.; et al. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J. Immunol. 2004, 173, 2562–2570.
https://doi.org/10.4049/jimmunol.173.4.2562.
- 175.
- 176.
- 177.
Yurdagul A., Jr.; Doran, A.C.; Cai, B.; et al. Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Front. Cardiovasc. Med. 2017, 4, 86.
https://doi.org/10.3389/fcvm.2017.00086.
- 178.
Kojima, Y.; Volkmer, J.P.; McKenna, K.; et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 2016, 536, 86–90.
https://doi.org/10.1038/nature18935.
- 179.
- 180.
Singla, B.; Lin, H.P.; Ahn, W.; et al. Loss of myeloid cell-specific SIRPalpha, but not CD47, attenuates inflammation and suppresses atherosclerosis. Cardiovasc. Res. 2022, 118, 3097–3111.
https://doi.org/10.1093/cvr/cvab369.
- 181.
Dong, Z.M.; Brown, A.A.; Wagner D.D.Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 2000, 101, 2290–2295.
https://doi.org/10.1161/01.cir.101.19.2290.
- 182.
Volcik, K.A.; Catellier, D.; Folsom, A.R.; et al. SELP and SELPLG genetic variation is associated with cell surface measures of SELP and SELPLG: The Atherosclerosis Risk in Communities Carotid MRI Study. Clin. Chem. 2009, 55, 1076–1082.
https://doi.org/10.1373/clinchem.2008.119487.
- 183.
Wang, L.; Rubinstein, R.; Lines, J.L.; et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 2011, 208, 577–592.
https://doi.org/10.1084/jem.20100619.
- 184.
- 185.
Naghavi, M.; John, R.; Naguib, S.; et al. pH Heterogeneity of human and rabbit atherosclerotic plaques: A new insight into detection of vulnerable plaque. Atherosclerosis 2002, 164, 27–35.
https://doi.org/10.1016/s0021-9150(02)00018-7.
- 186.
- 187.
- 188.
Gray, C.C.; Biron-Girard, B.; Wakeley, M.E.; et al. Negative Immune Checkpoint Protein, VISTA, Regulates the CD4(+) T(reg) Population During Sepsis Progression to Promote Acute Sepsis Recovery and Survival. Front. Immunol. 2022, 13, 861670.
https://doi.org/10.3389/fimmu.2022.861670.
- 189.
Daub, S.; Lutgens, E.; Munzel, T.; et al. CD40/CD40L and Related Signaling Pathways in Cardiovascular Health and Disease-The Pros and Cons for Cardioprotection. Int. J. Mol. Sci. 2020, 21, 8533.
https://doi.org/10.3390/ijms21228533.
- 190.
Yang, J.; Fang, P.; Yu, D.; et al. Chronic Kidney Disease Induces Inflammatory CD40+ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circ. Res. 2016, 119, 1226–1241.
https://doi.org/10.1161/CIRCRESAHA.116.308750.
- 191.
- 192.
Cipollone, F.; Mezzetti, A.; Porreca, E.; et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: Effects of statin therapy. Circulation 2002, 106, 399–402.
https://doi.org/10.1161/01.cir.0000025419.95769.f0.
- 193.
- 194.
Mach, F.; Schonbeck, U.; Sukhova, G.K.; et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998, 394, 200–203.
https://doi.org/10.1038/28204.
- 195.
Schonbeck, U.; Sukhova, G.K.; Shimizu, K.; et al. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 2000, 97, 7458–7463.
https://doi.org/10.1073/pnas.97.13.7458.
- 196.
Lutgens, E.; Gorelik, L.; Daemen, M.J.; et al. Requirement for CD154 in the progression of atherosclerosis. Nat. Med. 1999, 5, 1313–1316.
https://doi.org/10.1038/15271.
- 197.
- 198.
- 199.
- 200.
- 201.
Simons, K.H.; Aref, Z.; Peters, H.A.B.; et al. The role of CD27-CD70-mediated T cell co-stimulation in vasculogenesis, arteriogenesis and angiogenesis. Int. J. Cardiol. 2018, 260, 184–190.
https://doi.org/10.1016/j.ijcard.2018.02.015.
- 202.
Winkels, H.; Meiler, S.; Smeets, E.; et al. CD70 limits atherosclerosis and promotes macrophage function. Thromb. Haemost. 2017, 117, 164–175.
https://doi.org/10.1160/TH16-04-0318.
- 203.
Coquet, J.M.; Ribot, J.C.; Babala, N.; et al. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J. Exp. Med. 2013, 210, 715–728.
https://doi.org/10.1084/jem.20112061.
- 204.
Winkels, H.; Meiler, S.; Lievens, D.; et al. CD27 co-stimulation increases the abundance of regulatory T cells and reduces atherosclerosis in hyperlipidaemic mice. Eur. Heart J. 2017, 38, 3590–3599.
https://doi.org/10.1093/eurheartj/ehx517.
- 205.
Herrero-Cervera, A.; Espinos-Estevez, C.; Martin-Vano, S.; et al. Dissecting Abdominal Aortic Aneurysm Is Aggravated by Genetic Inactivation of LIGHT (TNFSF14). Biomedicines 2021, 9, 1518.
https://doi.org/10.3390/biomedicines9111518.
- 206.
Lee, W.H.; Kim, S.H.; Lee, Y.; et al. Tumor necrosis factor receptor superfamily 14 is involved in atherogenesis by inducing proinflammatory cytokines and matrix metalloproteinases. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 2004–2010.
https://doi.org/10.1161/hq1201.098945.
- 207.
- 208.
- 209.
Lin, J.D.; Nishi, H.; Poles, J.; et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 2019, 4, 124574.
https://doi.org/10.1172/jci.insight.124574.
- 210.
Cai, G.; Anumanthan, A.; Brown, J.A.; et al. CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat. Immunol. 2008, 9, 176–185.
https://doi.org/10.1038/ni1554.
- 211.
- 212.
Dolade, N.; Rayego-Mateos, S.; Garcia-Carrasco, A.; et al. B- and T-lymphocyte attenuator could be a new player in accelerated atherosclerosis associated with chronic kidney disease. Clin. Sci. 2023, 137, 1409–1429.
https://doi.org/10.1042/CS20230399.
- 213.
- 214.
Meiler, S.; Smeets, E.; Winkels, H.; et al. Constitutive GITR Activation Reduces Atherosclerosis by Promoting Regulatory CD4+ T-Cell Responses-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1748–1752.
https://doi.org/10.1161/ATVBAHA.116.307354.
- 215.
Shami, A.; Atzler, D.; Bosmans, L.A.; et al. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur. Heart J. 2020, 41, 2938–2948.
https://doi.org/10.1093/eurheartj/ehaa484.
- 216.
Arestides, R.S.; He, H.; Westlake, R.M.; et al. Costimulatory molecule OX40L is critical for both Th1 and Th2 responses in allergic inflammation. Eur. J. Immunol. 2002, 32, 2874–2880.
https://doi.org/10.1002/1521-4141(2002010)32:10<2874::AID-IMMU2874>3.0.CO;2-4.
- 217.
Wang, X.; Ria, M.; Kelmenson, P.M.; et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat. Genet. 2005, 37, 365–372.
https://doi.org/10.1038/ng1524.
- 218.
van Wanrooij, E.J.; van Puijvelde, G.H.; de Vos, P.; et al. Interruption of the Tnfrsf4/Tnfsf4 (OX40/OX40L) pathway attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 204–210.
https://doi.org/10.1161/01.ATV.0000251007.07648.81.
- 219.
Binder, C.J.; Hartvigsen, K.; Chang, M.K.; et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 2004, 114, 427–437.
https://doi.org/10.1172/JCI20479.
- 220.
Miller, A.M.; Xu, D.; Asquith, D.L.; et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med. 2008, 205, 339–346.
- 221.
Nakae, S.; Suto, H.; Iikura, M.; et al. Mast cells enhance T cell activation: Importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 2006, 176, 2238–2248.
https://doi.org/10.4049/jimmunol.176.4.2238.
- 222.
Wang, H.; Jiang, X.; Yang, F.; et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 2003, 101, 3901–3907.
https://doi.org/10.1182/blood-2002-08-2606.
- 223.
- 224.
- 225.