2504000183
  • Open Access
  • Article
Ginsenoside Re Ameliorates Cardiac Hypertrophy by Regulating CaSR-Mediated Signaling Pathway
  • Panpan Chen 1, 2, 3,   
  • Mubo Liu 1, 2, 3, 4,   
  • Hong Xiao 1, 2, 4,   
  • Ting Luo 1, 2, 4,   
  • Hong Ling 1, 2, 4,   
  • Xiaoyan Chen 5,   
  • Zongli Li 4,   
  • Shangfu Xu 1, 2,   
  • Zheng Li 1, 2, 4,   
  • Jiang Deng 1, 2, 4, *

Received: 31 Aug 2024 | Revised: 17 Sep 2024 | Accepted: 19 Sep 2024 | Published: 05 Mar 2025

Abstract

Cardiac hypertrophy is a compensatory response to pathological stimuli. Recent studies have suggested that calcium-sensing receptor (CaSR) plays an important role in the development of cardiac hypertrophy. Ginsenoside Re (Re) is a monoconstituent of the ginseng plant. Many studies have shown that Re has various beneficial pharmacological effects on the cardiovascular system. It remains uncertain if Re have an anti-cardiac hypertrophic effect through the modulation of the CaSR-mediated signaling pathway. In this research, we employed a rat model of cardiac hypertrophy to investigate the relationship between Re and CaSR. Significant reductions in blood pressure, left ventricle hypertrophic indexes, cross-sectional area of cardiomyocytes, and levels of the β-myosin heavy chain and atrial natriuretic peptide were observed in spontaneously hypertensive rats (SHR) after Re administration. In addition, Re improved cardiac structure and function in SHR. Furthermore, Re inhibited CaSR, calcineurin (CaN), nuclear factor of activated T cells 3 (NFAT3), phosphorylated zinc finger transcription factor 4 (p-GATA4), protein kinase C-β (PKC-β), rapidly accelerated fibrosarcoma-1 (Raf-1), and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2). It also increased the expression of p-NFAT3 and mitogen-activated protein kinase phosphatase-1 (MKP-1). These findings suggest that Re has beneficial effects on cardiac hypertrophy in SHR. The mechanisms underlying these effects are the regulation of the PKC-MAPK axis and the CaSR-mediated signaling pathway.

References 

  • 1.
    Zhang, Y.; Da, Q.; Cao, S.; et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation 2021, 144, 638–654.
  • 2.
    Oldfield, C.J.; Duhamel, T.A.; Dhalla, N.S. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can. J. Physiol. Pharmacol. 2020, 98, 74–84.
  • 3.
    Yoshida, K.; Holmes, J.W. Computational models of cardiac hypertrophy. Prog. Biophys. Mol. Biol. 2021, 159, 75–85.
  • 4.
    Jin, L.; Piao, Z.H.; Liu, C.P.; et al. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J. Cell. Mol. Med. 2018, 22, 1517–1526.
  • 5.
    Deng, K.Q.; Zhao, G.N.; Wang, Z.; et al. Targeting Transmembrane BAX Inhibitor Motif Containing 1 Alleviates Pathological Cardiac Hypertrophy. Circulation 2018, 137, 1486–1504.
  • 6.
    Meng, G.; Liu, J.; Liu, S.; et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br. J. Pharmacol. 2018, 175, 1126–1145.
  • 7.
    Bazgir, F.; Nau, J.; Nakhaei-Rad, S.; et al. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023, 12, 1780.
  • 8.
    Zhu, M.; Hu, J.; Pan, Y.; et al. Magnoflorine attenuates Ang II-induced cardiac remodeling via promoting AMPK-regulated autophagy. Cardiovasc. Diagn. Ther. 2024, 14, 576–588.
  • 9.
    Martin, T.G.; Juarros, M.A.; Leinwand, L.A. Regression of cardiac hypertrophy in health and disease: Mechanisms and therapeutic potential. Nat. Rev. Cardiol. 2023, 20, 347–363.
  • 10.
    Tang, X.; Pan, L.; Zhao, S.; et al. SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation. Circulation 2020, 141, 984–1000.
  • 11.
    Gallo, S.; Vitacolonna, A.; Bonzano, A.; et al. ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int. J. Mol. Sci. 2019, 20, 2164.
  • 12.
    Jin, L.; Sun, S.; Ryu, Y.; et al. Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci. Rep. 2018, 8, 9302.
  • 13.
    Ritterhoff, J.; Tian, R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: New paradigms and challenges. Nat. Rev. Cardiol. 2023, 20, 812–829.
  • 14.
    Luo, Y.; Jiang, N.; May, H.I.; et al. Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation 2021, 144, 34–51.
  • 15.
    Patel, S.K.; Ramchand, J.; Crocitti, V.; et al. Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy. Int. J. Mol. Sci. 2018, 19, 1303.
  • 16.
    Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2016, 97, 245–262.
  • 17.
    Zhang, J.; Sun, J.; Gu, X.; et al. Transcriptome sequencing analysis reveals the molecular regulatory mechanism of myocardial hypertrophy induced by angiotensin II. Biochem. Pharmacol. 2024, 229, 116532.
  • 18.
    Stanko, P.; Repova, K.; Baka, T.; et al. Sacubitril/Valsartan Alleviates Cardiac Remodeling and Dysfunction in L-NAME-Induced Hypertension and Hypertensive Heart Disease. Biomedicines 2024, 12, 733.
  • 19.
    Eghan, P.; Folson, A.A.; Donkor, A.; et al. Relationship between hypertensive disorders of pregnancy (HDP) and cardiac remodeling during pregnancy: Systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 298, 108–115.
  • 20.
    Zhang, B.B.; Zhao, Y.L.; Lu, Y.Y.; et al. TMEM100 acts as a TAK1 receptor that prevents pathological cardiac hypertrophy progression. Cell Commun. Signal. CCS 2024, 22, 438.
  • 21.
    Brown, E.M.; Gamba, G.; Riccardi, D.; et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993, 366, 575–580.
  • 22.
    Wang, R.; Xu, C.; Zhao, W.; et al. Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur. J. Biochem. 2003, 270, 2680–2688.
  • 23.
    Schreckenberg, R.; Schlüter, K.D. Calcium sensing receptor expression and signalling in cardiovascular physiology and disease. Vasc. Pharmacol. 2018, 107, 35–42.
  • 24.
    Pollak, M.R.; Brown, E.M.; Chou, Y.H.; et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993, 75, 1297–1303.
  • 25.
    Zhou, M.Y.; Cheng, L.; Chen, L.; et al. Calcium-sensing receptor in the development and treatment of pulmonary hypertension. Mol. Biol. Rep. 2021, 48, 975–981.
  • 26.
    Tharmalingam, S.; Hampson, D.R. The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration. Front. Physiol. 2016, 7, 190.
  • 27.
    Owen, J.L.; Cheng, S.X.; Ge, Y.; et al. The role of the calcium-sensing receptor in gastrointestinal inflammation. Semin. Cell Dev. Biol. 2016, 49, 44–51.
  • 28.
    Zeng, J.; Cheng, Y.; Xie, W.; et al. Calcium-sensing receptor and NF-κB pathways in TN breast cancer contribute to cancer-induced cardiomyocyte damage via activating neutrophil extracellular traps formation. Cell. Mol. Life Sci. CMLS 2024, 81, 19.
  • 29.
    Hendy, G.N.; Canaff, L. Calcium-sensing receptor, proinflammatory cytokines and calcium homeostasis. Semin. Cell Dev. Biol. 2016, 49, 37–43.
  • 30.
    Díaz-Soto, G.; Rocher, A.; García-Rodríguez, C.; et al. The Calcium-Sensing Receptor in Health and Disease. Int. Rev. Cell Mol. Biol. 2016, 327, 321–369.
  • 31.
    Sundararaman, S.S.; van der Vorst, E.P.C. Calcium-Sensing Receptor (CaSR), Its Impact on Inflammation and the Consequences on Cardiovascular Health. Int. J. Mol. Sci. 2021, 22, 2478.
  • 32.
    Liu, L.; Wang, C.; Lin, Y.; et al. Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol. Med. Rep. 2016, 14, 111–120.
  • 33.
    Jiang, J.; Sun, X.; Akther, M.; et al. Ginsenoside metabolite 20(S)-protopanaxatriol from Panax ginseng attenuates inflammation-mediated NLRP3 inflammasome activation. J. Ethnopharmacol. 2020, 251, 112564.
  • 34.
    Xu, X.; Jin, L.; Jiang, T.; et al. Ginsenoside Rh2 attenuates microglial activation against toxoplasmic encephalitis via TLR4/NF-κB signaling pathway. J. Ginseng Res. 2020, 44, 704–716.
  • 35.
    Sarhene, M.; Ni, J.Y.; Duncan, E.S.; et al.Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol. Res. 2021, 166, 105481.
  • 36.
    Gao, X.Y.; Liu, G.C.; Zhang, J.X.; et al. Pharmacological Properties of Ginsenoside Re. Front. Pharmacol. 2022, 13, 754191.
  • 37.
    Lee, G.H.; Lee, W.J.; Hur, J.; et al. Ginsenoside Re Mitigates 6-Hydroxydopamine-Induced Oxidative Stress through Upregulation of GPX4. Molecules 2020, 25, 188.
  • 38.
    Liu, M.; Bai, X.; Yu, S.; et al. Ginsenoside Re Inhibits ROS/ASK-1 Dependent Mitochondrial Apoptosis Pathway and Activation of Nrf2-Antioxidant Response in Beta-Amyloid-Challenged SH-SY5Y Cells. Molecules 2019, 24, 2687.
  • 39.
    Wang, Q.W.; Yu, X.F.; Xu, H.L.; et al. Ginsenoside Re Attenuates Isoproterenol-Induced Myocardial Injury in Rats. Evid. -Based Complement. Altern. Med. 2018, 2018, 8637134.
  • 40.
    Yu, Y.; Sun, J.; Liu, J.; et al. Ginsenoside Re Preserves Cardiac Function and Ameliorates Left Ventricular Remodeling in a Rat Model of Myocardial Infarction. J. Cardiovasc. Pharmacol. 2020, 75, 91–97.
  • 41.
    Wang, Q.W.; Yu, X.F.; Xu, H.L.; et al. Ginsenoside Re Improves Isoproterenol-Induced Myocardial Fibrosis and Heart Failure in Rats. Evid. -Based Complement. Altern. Med. 2019, 2019, 3714508.
  • 42.
    Sun, J.; Wang, R.; Chao, T.; et al. Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. J. Ginseng Res. 2023, 47, 218–227.
  • 43.
    He, Y. Effect of Ginsenoside Re on Left Ventricular Hypertrophy Induced by Aortic Coarctation in Rats. Master’s Thesis, Zunyi Medical University, Zunyi, China, 2009.
  • 44.
    Smith, K.M.; Squiers, J. Hypertrophic cardiomyopathy: An overview. Crit. Care Nurs. Clin. N. Am. 2013, 25, 263–272.
  • 45.
    Oka, T.; Akazawa, H.; Naito, A.T.; et al. Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ. Res. 2014, 114, 565–571.
  • 46.
    Ren, B.; Feng, J.; Yang, N.; et al. Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway. Int. Immunopharmacol. 2021, 98, 107841.
  • 47.
    Damatto, R.L.; Lima, A.R.; Martinez, P.F.; et al. Myocardial myostatin in spontaneously hypertensive rats with heart failure. Int. J. Cardiol. 2016, 215, 384–387.
  • 48.
    Elmarakby, A.A.; Sullivan, J.C. Sex differences in hypertension: Lessons from spontaneously hypertensive rats (SHR). Clin. Sci. 2021, 135, 1791–1804.
  • 49.
    Fu, S.; Li, Y.L.; Wu, Y.T.; et al. Icariside II attenuates myocardial fibrosis by inhibiting nuclear factor-κB and the TGF-β1/Smad2 signalling pathway in spontaneously hypertensive rats. Biomed. Pharmacothe. 2018, 100, 64–71.
  • 50.
    Chen, P.; Wen, Z.; Shi, W.; et al. Effects of Sodium Ferulate on Cardiac Hypertrophy Are via the CaSR-Mediated Signaling Pathway. Front. Pharmacol. 2021, 12, 674570.
  • 51.
    Lee, H.J.; Kim, B.M.; Lee, S.H.; et al. Ginseng-Induced Changes to Blood Vessel Dilation and the Metabolome of Rats. Nutrients 2020, 12, 2238.
  • 52.
    Vuksan, V.; Xu, Z.Z.; Jovanovski, E.; et al. Efficacy and safety of American ginseng (Panax quinquefolius L.) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: A double-blind, randomized, cross-over clinical trial. Eur. J. Nutr. 2019, 58, 1237–1245.
  • 53.
    Zhu, G.X.; Zuo, J.L.; Xu, L.; et al. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action. Pharmacol. Res. 2021, 169, 105647.
  • 54.
    Lu, M.; Leng, B.; He, X.; et al. Calcium Sensing Receptor-Related Pathway Contributes to Cardiac Injury and the Mechanism of Astragaloside IV on Cardioprotection. Front. Pharmacol. 2018, 9, 1163.
  • 55.
    Leach, K.; Hannan, F.M.; Josephs, T.M.; et al. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol. Rev. 2020, 72, 558–604.
  • 56.
    Hong, S.; Zhang, X.; Zhang, X.; et al. Role of the calcium sensing receptor in cardiomyocyte apoptosis via mitochondrial dynamics in compensatory hypertrophied myocardium of spontaneously hypertensive rat. Biochem. Biophys. Res. Commun. 2017, 487, 728–733.
  • 57.
    Tian, L.; Andrews, C.; Yan, Q.; et al. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis. Transl. Med. 2024, 10, 167–194.
  • 58.
    Hu, B.; Song, J.T.; Ji, X.F.; et al. Sodium Ferulate Protects against Angiotensin II-Induced Cardiac Hypertrophy in Mice by Regulating the MAPK/ERK and JNK Pathways. Bio. Med. Res. Int. 2017, 2017, 3754942.
Share this article:
How to Cite
Chen, P.; Liu, M.; Xiao, H.; Luo, T.; Ling, H.; Chen, X.; Li, Z.; Xu, S.; Li, Z.; Deng, J. Ginsenoside Re Ameliorates Cardiac Hypertrophy by Regulating CaSR-Mediated Signaling Pathway. International Journal of Drug Discovery and Pharmacology 2025, 4 (1), 100006. https://doi.org/10.53941/ijddp.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.