- 1.
Zhang, Y.; Da, Q.; Cao, S.; et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation 2021, 144, 638–654.
- 2.
Oldfield, C.J.; Duhamel, T.A.; Dhalla, N.S. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can. J. Physiol. Pharmacol. 2020, 98, 74–84.
- 3.
Yoshida, K.; Holmes, J.W. Computational models of cardiac hypertrophy. Prog. Biophys. Mol. Biol. 2021, 159, 75–85.
- 4.
Jin, L.; Piao, Z.H.; Liu, C.P.; et al. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J. Cell. Mol. Med. 2018, 22, 1517–1526.
- 5.
Deng, K.Q.; Zhao, G.N.; Wang, Z.; et al. Targeting Transmembrane BAX Inhibitor Motif Containing 1 Alleviates Pathological Cardiac Hypertrophy. Circulation 2018, 137, 1486–1504.
- 6.
Meng, G.; Liu, J.; Liu, S.; et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br. J. Pharmacol. 2018, 175, 1126–1145.
- 7.
Bazgir, F.; Nau, J.; Nakhaei-Rad, S.; et al. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023, 12, 1780.
- 8.
Zhu, M.; Hu, J.; Pan, Y.; et al. Magnoflorine attenuates Ang II-induced cardiac remodeling via promoting AMPK-regulated autophagy. Cardiovasc. Diagn. Ther. 2024, 14, 576–588.
- 9.
Martin, T.G.; Juarros, M.A.; Leinwand, L.A. Regression of cardiac hypertrophy in health and disease: Mechanisms and therapeutic potential. Nat. Rev. Cardiol. 2023, 20, 347–363.
- 10.
Tang, X.; Pan, L.; Zhao, S.; et al. SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation. Circulation 2020, 141, 984–1000.
- 11.
Gallo, S.; Vitacolonna, A.; Bonzano, A.; et al. ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int. J. Mol. Sci. 2019, 20, 2164.
- 12.
Jin, L.; Sun, S.; Ryu, Y.; et al. Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci. Rep. 2018, 8, 9302.
- 13.
Ritterhoff, J.; Tian, R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: New paradigms and challenges. Nat. Rev. Cardiol. 2023, 20, 812–829.
- 14.
Luo, Y.; Jiang, N.; May, H.I.; et al. Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation 2021, 144, 34–51.
- 15.
Patel, S.K.; Ramchand, J.; Crocitti, V.; et al. Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy. Int. J. Mol. Sci. 2018, 19, 1303.
- 16.
Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2016, 97, 245–262.
- 17.
Zhang, J.; Sun, J.; Gu, X.; et al. Transcriptome sequencing analysis reveals the molecular regulatory mechanism of myocardial hypertrophy induced by angiotensin II. Biochem. Pharmacol. 2024, 229, 116532.
- 18.
Stanko, P.; Repova, K.; Baka, T.; et al. Sacubitril/Valsartan Alleviates Cardiac Remodeling and Dysfunction in L-NAME-Induced Hypertension and Hypertensive Heart Disease. Biomedicines 2024, 12, 733.
- 19.
Eghan, P.; Folson, A.A.; Donkor, A.; et al. Relationship between hypertensive disorders of pregnancy (HDP) and cardiac remodeling during pregnancy: Systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 298, 108–115.
- 20.
Zhang, B.B.; Zhao, Y.L.; Lu, Y.Y.; et al. TMEM100 acts as a TAK1 receptor that prevents pathological cardiac hypertrophy progression. Cell Commun. Signal. CCS 2024, 22, 438.
- 21.
Brown, E.M.; Gamba, G.; Riccardi, D.; et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993, 366, 575–580.
- 22.
Wang, R.; Xu, C.; Zhao, W.; et al. Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur. J. Biochem. 2003, 270, 2680–2688.
- 23.
Schreckenberg, R.; Schlüter, K.D. Calcium sensing receptor expression and signalling in cardiovascular physiology and disease. Vasc. Pharmacol. 2018, 107, 35–42.
- 24.
Pollak, M.R.; Brown, E.M.; Chou, Y.H.; et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993, 75, 1297–1303.
- 25.
Zhou, M.Y.; Cheng, L.; Chen, L.; et al. Calcium-sensing receptor in the development and treatment of pulmonary hypertension. Mol. Biol. Rep. 2021, 48, 975–981.
- 26.
Tharmalingam, S.; Hampson, D.R. The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration. Front. Physiol. 2016, 7, 190.
- 27.
Owen, J.L.; Cheng, S.X.; Ge, Y.; et al. The role of the calcium-sensing receptor in gastrointestinal inflammation. Semin. Cell Dev. Biol. 2016, 49, 44–51.
- 28.
Zeng, J.; Cheng, Y.; Xie, W.; et al. Calcium-sensing receptor and NF-κB pathways in TN breast cancer contribute to cancer-induced cardiomyocyte damage via activating neutrophil extracellular traps formation. Cell. Mol. Life Sci. CMLS 2024, 81, 19.
- 29.
Hendy, G.N.; Canaff, L. Calcium-sensing receptor, proinflammatory cytokines and calcium homeostasis. Semin. Cell Dev. Biol. 2016, 49, 37–43.
- 30.
Díaz-Soto, G.; Rocher, A.; García-Rodríguez, C.; et al. The Calcium-Sensing Receptor in Health and Disease. Int. Rev. Cell Mol. Biol. 2016, 327, 321–369.
- 31.
Sundararaman, S.S.; van der Vorst, E.P.C. Calcium-Sensing Receptor (CaSR), Its Impact on Inflammation and the Consequences on Cardiovascular Health. Int. J. Mol. Sci. 2021, 22, 2478.
- 32.
Liu, L.; Wang, C.; Lin, Y.; et al. Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol. Med. Rep. 2016, 14, 111–120.
- 33.
Jiang, J.; Sun, X.; Akther, M.; et al. Ginsenoside metabolite 20(S)-protopanaxatriol from Panax ginseng attenuates inflammation-mediated NLRP3 inflammasome activation. J. Ethnopharmacol. 2020, 251, 112564.
- 34.
Xu, X.; Jin, L.; Jiang, T.; et al. Ginsenoside Rh2 attenuates microglial activation against toxoplasmic encephalitis via TLR4/NF-κB signaling pathway. J. Ginseng Res. 2020, 44, 704–716.
- 35.
Sarhene, M.; Ni, J.Y.; Duncan, E.S.; et al.Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol. Res. 2021, 166, 105481.
- 36.
Gao, X.Y.; Liu, G.C.; Zhang, J.X.; et al. Pharmacological Properties of Ginsenoside Re. Front. Pharmacol. 2022, 13, 754191.
- 37.
Lee, G.H.; Lee, W.J.; Hur, J.; et al. Ginsenoside Re Mitigates 6-Hydroxydopamine-Induced Oxidative Stress through Upregulation of GPX4. Molecules 2020, 25, 188.
- 38.
Liu, M.; Bai, X.; Yu, S.; et al. Ginsenoside Re Inhibits ROS/ASK-1 Dependent Mitochondrial Apoptosis Pathway and Activation of Nrf2-Antioxidant Response in Beta-Amyloid-Challenged SH-SY5Y Cells. Molecules 2019, 24, 2687.
- 39.
Wang, Q.W.; Yu, X.F.; Xu, H.L.; et al. Ginsenoside Re Attenuates Isoproterenol-Induced Myocardial Injury in Rats. Evid. -Based Complement. Altern. Med. 2018, 2018, 8637134.
- 40.
Yu, Y.; Sun, J.; Liu, J.; et al. Ginsenoside Re Preserves Cardiac Function and Ameliorates Left Ventricular Remodeling in a Rat Model of Myocardial Infarction. J. Cardiovasc. Pharmacol. 2020, 75, 91–97.
- 41.
Wang, Q.W.; Yu, X.F.; Xu, H.L.; et al. Ginsenoside Re Improves Isoproterenol-Induced Myocardial Fibrosis and Heart Failure in Rats. Evid. -Based Complement. Altern. Med. 2019, 2019, 3714508.
- 42.
Sun, J.; Wang, R.; Chao, T.; et al. Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. J. Ginseng Res. 2023, 47, 218–227.
- 43.
He, Y. Effect of Ginsenoside Re on Left Ventricular Hypertrophy Induced by Aortic Coarctation in Rats. Master’s Thesis, Zunyi Medical University, Zunyi, China, 2009.
- 44.
Smith, K.M.; Squiers, J. Hypertrophic cardiomyopathy: An overview. Crit. Care Nurs. Clin. N. Am. 2013, 25, 263–272.
- 45.
Oka, T.; Akazawa, H.; Naito, A.T.; et al. Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ. Res. 2014, 114, 565–571.
- 46.
Ren, B.; Feng, J.; Yang, N.; et al. Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway. Int. Immunopharmacol. 2021, 98, 107841.
- 47.
Damatto, R.L.; Lima, A.R.; Martinez, P.F.; et al. Myocardial myostatin in spontaneously hypertensive rats with heart failure. Int. J. Cardiol. 2016, 215, 384–387.
- 48.
Elmarakby, A.A.; Sullivan, J.C. Sex differences in hypertension: Lessons from spontaneously hypertensive rats (SHR). Clin. Sci. 2021, 135, 1791–1804.
- 49.
Fu, S.; Li, Y.L.; Wu, Y.T.; et al. Icariside II attenuates myocardial fibrosis by inhibiting nuclear factor-κB and the TGF-β1/Smad2 signalling pathway in spontaneously hypertensive rats. Biomed. Pharmacothe. 2018, 100, 64–71.
- 50.
Chen, P.; Wen, Z.; Shi, W.; et al. Effects of Sodium Ferulate on Cardiac Hypertrophy Are via the CaSR-Mediated Signaling Pathway. Front. Pharmacol. 2021, 12, 674570.
- 51.
Lee, H.J.; Kim, B.M.; Lee, S.H.; et al. Ginseng-Induced Changes to Blood Vessel Dilation and the Metabolome of Rats. Nutrients 2020, 12, 2238.
- 52.
Vuksan, V.; Xu, Z.Z.; Jovanovski, E.; et al. Efficacy and safety of American ginseng (Panax quinquefolius L.) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: A double-blind, randomized, cross-over clinical trial. Eur. J. Nutr. 2019, 58, 1237–1245.
- 53.
Zhu, G.X.; Zuo, J.L.; Xu, L.; et al. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action. Pharmacol. Res. 2021, 169, 105647.
- 54.
Lu, M.; Leng, B.; He, X.; et al. Calcium Sensing Receptor-Related Pathway Contributes to Cardiac Injury and the Mechanism of Astragaloside IV on Cardioprotection. Front. Pharmacol. 2018, 9, 1163.
- 55.
Leach, K.; Hannan, F.M.; Josephs, T.M.; et al. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol. Rev. 2020, 72, 558–604.
- 56.
Hong, S.; Zhang, X.; Zhang, X.; et al. Role of the calcium sensing receptor in cardiomyocyte apoptosis via mitochondrial dynamics in compensatory hypertrophied myocardium of spontaneously hypertensive rat. Biochem. Biophys. Res. Commun. 2017, 487, 728–733.
- 57.
Tian, L.; Andrews, C.; Yan, Q.; et al. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis. Transl. Med. 2024, 10, 167–194.
- 58.
Hu, B.; Song, J.T.; Ji, X.F.; et al. Sodium Ferulate Protects against Angiotensin II-Induced Cardiac Hypertrophy in Mice by Regulating the MAPK/ERK and JNK Pathways. Bio. Med. Res. Int. 2017, 2017, 3754942.