2504000185
  • Open Access
  • Review
Coronary Microvascular Dysfunction: A Potential Intervention Strategy against Acute Myocardial Infarction
  • Zihan Wang 1,   
  • Lianhua Fang 1,   
  • Yang Lv 2,   
  • Shoubao Wang 1, *,   
  • Guanhua Du 1, *

Received: 26 Aug 2024 | Revised: 11 Oct 2024 | Accepted: 11 Oct 2024 | Published: 14 Feb 2025

Abstract

Recent studies have illuminated the role of coronary microvascular dysfunction (CMD) as a pivotal contributor to acute myocardial infarction (AMI). Microvascular dysfunction may lead to severe results including microvascular obstruction (MVO) and intramyocardial hemorrhage (IMH), which are associated with poor prognosis. This article reviews the current research on coronary microvascular dysfunction in myocardial infarction reperfusion including the mechanisms, methods and models assessing CMD. This review emphasizes the importance of CMD and proposes potential avenues for future research in this field. Interventions for CMD may pave the way for novel treatment strategies in the management of acute myocardial infarction (AMI).

References 

  • 1.
    Lincoff, A.M.; Topol, E.J. Illusion of Reperfusion. Does Anyone Achieve Optimal Reperfusion during Acute Myocardial Infarction? Circulation 1993, 88, 1361–1374. https://doi.org/10.1161/01.cir.88.3.1361.
  • 2.
    Keeley, E.C.; Boura, J.A.; Grines, C.L. Primary Angioplasty versus Intravenous Thrombolytic Therapy for Acute Myocardial Infarction: A Quantitative Review of 23 Randomised Trials. Lancet 2003, 361, 13–20. https://doi.org/10.1016/S0140-6736(03)12113-7.
  • 3.
    Crea, F.; Camici, P.G.; Merz, C.N.B. Coronary Microvascular Dysfunction: An Update. Eur. Heart J. 2014, 35, 1101–1111. https://doi.org/10.1093/eurheartj/eht513.
  • 4.
    Camici, P.G.; Crea, F. Coronary Microvascular Dysfunction. N. Engl. J. Med. 2007, 356, 830–840. https://doi.org/10.1056/NEJMra061889.
  • 5.
    Rehan, R.; Yong, A.; Ng, M.; et al. Coronary Microvascular Dysfunction: A Review of Recent Progress and Clinical Implications. Front. Cardiovasc. Med. 2023, 10, 1111721. https://doi.org/10.3389/fcvm.2023.1111721.
  • 6.
    SenthilKumar, G.; Hammond, S.T.; Zirgibel, Z.; et al. Is the Peripheral Microcirculation a Window into the Human Coronary Microvasculature? J. Mol. Cell Cardiol. 2024, 193, 67–77. https://doi.org/10.1016/j.yjmcc.2024.06.002.
  • 7.
    Judd, R.M.; Lugo-Olivieri, C.H.; Arai, M.; et al. Physiological Basis of Myocardial Contrast Enhancement in Fast Magnetic Resonance Images of 2-Day-Old Reperfused Canine Infarcts. Circulation 1995, 92, 1902–1910. https://doi.org/10.1161/01.cir.92.7.1902.
  • 8.
    Ghobrial, M.; Bawamia, B.; Cartlidge, T.; et al. Microvascular Obstruction in Acute Myocardial Infarction, a Potential Therapeutic Target. J. Clin. Med. 2023, 12, 5934. https://doi.org/10.3390/jcm12185934.
  • 9.
    Koek, H.L.; Soedamah-Muthu, S.S.; Kardaun, J.W.P.F.; et al. Short- and Long-Term Mortality after Acute Myocardial Infarction: Comparison of Patients with and without Diabetes Mellitus. Eur. J. Epidemiol. 2007, 22, 883–888. https://doi.org/10.1007/s10654-007-9191-5.
  • 10.
    Eitel, I.; Kubusch, K.; Strohm, O.; et al. Prognostic Value and Determinants of a Hypointense Infarct Core in T2-Weighted Cardiac Magnetic Resonance in Acute Reperfused ST-Elevation–Myocardial Infarction. Circ Cardiovasc. Imaging 2011, 4, 354–362. https://doi.org/10.1161/CIRCIMAGING.110.960500.
  • 11.
    Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute Myocardial Infarction. Lancet 2017, 389, 197–210. https://doi.org/10.1016/S0140-6736(16)30677-8.
  • 12.
    Van Kranenburg, M.; Magro, M.; Thiele, H.; et al. Prognostic Value of Microvascular Obstruction and Infarct Size, as Measured by CMR in STEMI Patients. JACC Cardiovasc. Imaging 2014, 7, 930–939. https://doi.org/10.1016/j.jcmg.2014.05.010.
  • 13.
    Berry, C.; Ibáñez, B. Intramyocardial Hemorrhage: The Final Frontier for Preventing Heart Failure Post-Myocardial Infarction. J. Am. Coll. Cardiol. 2022, 79, 49–51. https://doi.org/10.1016/j.jacc.2021.11.002.
  • 14.
    Cai, Y.; Xing, H.; Hao, M.; et al. Research progress on microvascular injury after reperfused ST-segment elevation myocardial infarction assessed by CMR imaging. Chin. J. Cardiol. 2022, 50, 1237–1242.
  • 15.
    Smilowitz, N.R.; Toleva, O.; Chieffo, A.; et al. Coronary Microvascular Disease in Contemporary Clinical Practice. Circ. Cardiovasc. Interv. 2023, 16, e012568. https://doi.org/10.1161/CIRCINTERVENTIONS.122.012568.
  • 16.
    Xu, J.; Lo, S.; Juergens, C.P.; et al. Assessing Coronary Microvascular Dysfunction in Ischaemic Heart Disease: Little Things Can Make a Big Difference. Heart Lung Circ. 2020, 29, 118–127. https://doi.org/10.1016/j.hlc.2019.05.187.
  • 17.
    Yang, Z.; Liu, Y.; Li, Z.; et al. Coronary Microvascular Dysfunction and Cardiovascular Disease: Pathogenesis, Associations and Treatment Strategies. Biomed. Pharmacother. 2023, 164, 115011. https://doi.org/10.1016/j.biopha.2023.115011.
  • 18.
    Horton, W.B.; Barrett, E.J. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr. Rev. 2021, 42, 29–55. https://doi.org/10.1210/endrev/bnaa025.
  • 19.
    Lorca, R.; Jiménez-Blanco, M.; García-Ruiz, J.M.; et al. Coexistence of Transmural and Lateral Wavefront Progression of Myocardial Infarction in the Human Heart. Rev. Española Cardiología 2021, 74, 870–877. https://doi.org/10.1016/j.rec.2020.07.007.
  • 20.
    Qu, J.; Cheng, Y.; Wu, W.; et al. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front. Cell Dev. Biol. 2021, 9, 730621. https://doi.org/10.3389/fcell.2021.730621.
  • 21.
    Georgiadou, A.; Cunnington, A.J. Shedding of the Vascular Endothelial Glycocalyx: A Common Pathway to Severe Malaria? Clin. Infect. Dis. 2019, 69, 1721–1723. https://doi.org/10.1093/cid/ciz043.
  • 22.
    Sezer, M.; van Royen, N.; Umman, B.; et al. Coronary Microvascular Injury in Reperfused Acute Myocardial Infarction: A View from an Integrative Perspective. J. Am. Heart Assoc. 2018, 7, e009949. https://doi.org/10.1161/JAHA.118.009949.
  • 23.
    Hausenloy, D.J.; Chilian, W.; Crea, F.; et al. The Coronary Circulation in Acute Myocardial Ischaemia/Reperfusion Injury: A Target for Cardioprotection. Cardiovasc. Res. 2019, 115, 1143–1155. https://doi.org/10.1093/cvr/cvy286.
  • 24.
    Vaidya, K.; Tucker, B.; Patel, S.; et al. Acute Coronary Syndromes (ACS)-Unravelling Biology to Identify New Therapies-The Microcirculation as a Frontier for New Therapies in ACS. Cells 2021, 10, 2188. https://doi.org/10.3390/cells10092188.
  • 25.
    Konijnenberg, L.S.F.; Damman, P.; Duncker, D.J.; et al. Pathophysiology and Diagnosis of Coronary Microvascular Dysfunction in ST-Elevation Myocardial Infarction. Cardiovasc. Res. 2020, 116, 787–805. https://doi.org/10.1093/cvr/cvz301.
  • 26.
    Kloner, R.A.; Ganote, C.E.; Jennings, R.B. The “No-Reflow” Phenomenon after Temporary Coronary Occlusion in the Dog. J. Clin. Investig. 1974, 54, 1496–1508. https://doi.org/10.1172/JCI107898.
  • 27.
    Bulluck, H.; Dharmakumar, R.; Arai, A.E.; et al. Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation 2018, 137, 1949–1964. https://doi.org/10.1161/CIRCULATIONAHA.117.030693.
  • 28.
    Ibanez, B.; Aletras, A.H.; Arai, A.E.; et al. Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2019, 74, 238–256. https://doi.org/10.1016/j.jacc.2019.05.024.
  • 29.
    Hamirani, Y.S.; Wong, A.; Kramer, C.M.; et al. Effect of Microvascular Obstruction and Intramyocardial Hemorrhage by CMR on LV Remodeling and Outcomes after Myocardial Infarction: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Imaging 2014, 7, 940–952. https://doi.org/10.1016/j.jcmg.2014.06.012.
  • 30.
    Betgem, R.P.; de Waard, G.A.; Nijveldt, R.; et al. Intramyocardial Haemorrhage after Acute Myocardial Infarction. Nat. Rev. Cardiol. 2015, 12, 156–167. https://doi.org/10.1038/nrcardio.2014.188.
  • 31.
    Ghugre, N.R.; Ramanan, V.; Pop, M.; et al. Quantitative Tracking of Edema, Hemorrhage, and Microvascular Obstruction in Subacute Myocardial Infarction in a Porcine Model by MRI: Quantitative Tracking of Edema, Hemorrhage, and MVO. Magn. Reson. Med. 2011, 66, 1129–1141. https://doi.org/10.1002/mrm.22855.
  • 32.
    Konijnenberg, L.S.F.; Kuster, C.T.A.; Luiken, T.T.J.; et al. Protecting Coronary Microvascular Integrity in Reperfused Acute Myocardial Infarction to Improve Clinical Outcome. Cond. Med. 2022, 5, 144–154.
  • 33.
    Kloka, J.A.; Friedrichson, B.; Wülfroth, P.; et al. Microvascular Leakage as Therapeutic Target for Ischemia and Reperfusion Injury. Cells 2023, 12, 1345. https://doi.org/10.3390/cells12101345.
  • 34.
    Goddard, L.M.; Iruela-Arispe, M.L. Cellular and Molecular Regulation of Vascular Permeability. Thromb. Haemost. 2013, 109, 407–415. https://doi.org/10.1160/TH12-09-0678.
  • 35.
    Fröhlich, G.M.; Meier, P.; White, S.K.; et al. Myocardial Reperfusion Injury: Looking beyond Primary PCI. Eur. Heart J. 2013, 34, 1714–1722. https://doi.org/10.1093/eurheartj/eht090.
  • 36.
    O’Farrell, F.M.; Attwell, D. A Role for Pericytes in Coronary No-Reflow. Nat. Rev. Cardiol. 2014, 11, 427–432. https://doi.org/10.1038/nrcardio.2014.58.
  • 37.
    Beijnink, C.W.H.; van der Hoeven, N.W.; Konijnenberg, L.S.F.; et al. Cardiac MRI to Visualize Myocardial Damage after ST-Segment Elevation Myocardial Infarction: A Review of Its Histologic Validation. Radiology 2021, 301, 4–18. https://doi.org/10.1148/radiol.2021204265.
  • 38.
    Milusev, A.; Rieben, R.; Sorvillo, N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 897087. https://doi.org/10.3389/fcvm.2022.897087.
  • 39.
    Heusch, G. Coronary Microvascular Obstruction: The New Frontier in Cardioprotection. Basic. Res. Cardiol. 2019, 114, 45. https://doi.org/10.1007/s00395-019-0756-8.
  • 40.
    Costa, R.A.; Abizaid, A.; Lotan, C.; et al. Impact of Thrombus Burden on Outcomes After Standard Versus Mesh-Covered Stents in Acute Myocardial Infarction (from the MGuard for Acute ST Elevation Reperfusion Trial). Am. J. Cardiol. 2015, 115, 161–166. https://doi.org/10.1016/j.amjcard.2014.10.016.
  • 41.
    Carbone, F.; Nencioni, A.; Mach, F.; et al. Pathophysiological Role of Neutrophils in Acute Myocardial Infarction. Thromb. Haemost. 2013, 110, 501–514. https://doi.org/10.1160/TH13-03-0211.
  • 42.
    Hollander, M.R.; de Waard, G.A.; Konijnenberg, L.S.F.; et al. Dissecting the Effects of Ischemia and Reperfusion on the Coronary Microcirculation in a Rat Model of Acute Myocardial Infarction. PLoS ONE 2016, 11, e0157233. https://doi.org/10.1371/journal.pone.0157233.
  • 43.
    Galli, M.; Niccoli, G.; De Maria, G.; et al. Coronary Microvascular Obstruction and Dysfunction in Patients with Acute Myocardial Infarction. Nat. Rev. Cardiol. 2024, 21, 283–298. https://doi.org/10.1038/s41569-023-00953-4.
  • 44.
    Liu, T.; Howarth, A.G.; Chen, Y.; et al. Intramyocardial Hemorrhage and the “Wave Front” of Reperfusion Injury Compromising Myocardial Salvage. J. Am. Coll. Cardiol. 2022, 79, 35–48. https://doi.org/10.1016/j.jacc.2021.10.034.
  • 45.
    Cokic, I.; Chan, S.F.; Guan, X.; et al. Intramyocardial Hemorrhage Drives Fatty Degeneration of Infarcted Myocardium. Nat. Commun. 2022, 13, 6394. https://doi.org/10.1038/s41467-022-33776-x.
  • 46.
    Bochaton, T.; Lassus, J.; Paccalet, A.; et al. Association of Myocardial Hemorrhage and Persistent Microvascular Obstruction with Circulating Inflammatory Biomarkers in STEMI Patients. PLoS ONE 2021, 16, e0245684. https://doi.org/10.1371/journal.pone.0245684.
  • 47.
    Behrouzi, B.; Weyers, J.J.; Qi, X.; et al. Action of Iron Chelator on Intramyocardial Hemorrhage and Cardiac Remodeling Following Acute Myocardial Infarction. Basic. Res. Cardiol. 2020, 115, 24. https://doi.org/10.1007/s00395-020-0782-6.
  • 48.
    Chan, S.F.; Vora, K.; Dharmakumar, R. Chronic Heart Failure Following Hemorrhagic Myocardial Infarction: Mechanism, Treatment and Outlook. Cell Stress. 2023, 7, 7–11. https://doi.org/10.15698/cst2023.02.276.
  • 49.
    Ghugre, N.R.; Pop, M.; Thomas, R.; et al. Hemorrhage Promotes Inflammation and Myocardial Damage Following Acute Myocardial Infarction: Insights from a Novel Preclinical Model and Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2016, 19, 50. https://doi.org/10.1186/s12968-017-0361-7.
  • 50.
    Westman, P.C.; Lipinski, M.J.; Luger, D.; et al. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2016, 67, 2050–2060. https://doi.org/10.1016/j.jacc.2016.01.073.
  • 51.
    Kloner, R.A.; Giacomelli, F.; Alker, K.J.; et al. Influx of Neutrophils into the Walls of Large Epicardial Coronary Arteries in Response to Ischemia/Reperfusion. Circulation 1991, 84, 1758–1772. https://doi.org/10.1161/01.cir.84.4.1758.
  • 52.
    Kei, C.Y.; Singh, K.; Dautov, R.F.; et al. Coronary “Microvascular Dysfunction”: Evolving Understanding of Pathophysiology, Clinical Implications, and Potential Therapeutics. Int. J. Mol. Sci. 2023, 24, 11287. https://doi.org/10.3390/ijms241411287.
  • 53.
    Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; et al. Endothelial Dysfunction and Vascular Disease–a 30th Anniversary Update. Acta Physiol. 2017, 219, 22–96. https://doi.org/10.1111/apha.12646.
  • 54.
    Crea, F.; Montone, R.A.; Rinaldi, R. Pathophysiology of Coronary Microvascular Dysfunction. Circ. J. 2022, 86, 1319–1328. https://doi.org/10.1253/circj.CJ-21-0848.
  • 55.
    Teixeira, R.B.; Pfeiffer, M.; Zhang, P.; et al. Reduction in Mitochondrial ROS Improves Oxidative Phosphorylation and Provides Resilience to Coronary Endothelium in Non-Reperfused Myocardial Infarction. Basic. Res. Cardiol. 2023, 118, 3. https://doi.org/10.1007/s00395-022-00976-x.
  • 56.
    Ndrepepa, G.; Kastrati, A. Coronary No-Reflow after Primary Percutaneous Coronary Intervention—Current Knowledge on Pathophysiology, Diagnosis, Clinical Impact and Therapy. JCM 2023, 12, 5592. https://doi.org/10.3390/jcm12175592.
  • 57.
    Ndrepepa, G.; Mehilli, J.; Schulz, S.; et al. Prognostic Significance of Epicardial Blood Flow before and after Percutaneous Coronary Intervention in Patients with Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2008, 52, 512–517. https://doi.org/10.1016/j.jacc.2008.05.009.
  • 58.
    Ghugre, N.R.; Pop, M.; Barry, J.; et al. Quantitative Magnetic Resonance Imaging Can Distinguish Remodeling Mechanisms after Acute Myocardial Infarction Based on the Severity of Ischemic Insult. Magn. Reson. Med. 2013, 70, 1095–1105. https://doi.org/10.1002/mrm.24531.
  • 59.
    Vora, K.P.; Kumar, A.; Krishnam, M.S.; et al. Microvascular Obstruction and Intramyocardial Hemorrhage in Reperfused Myocardial Infarctions: Pathophysiology and Clinical Insights from Imaging. JACC Cardiovasc. Imaging 2024, 17, 795–810. https://doi.org/10.1016/j.jcmg.2024.02.003.
  • 60.
    Nair, A.R.; Johnson, E.A.; Yang, H.-J.; et al. Reperfused Hemorrhagic Myocardial Infarction in Rats. PLoS ONE 2020, 15, e0243207. https://doi.org/10.1371/journal.pone.0243207.
  • 61.
    Kali, A.; Kumar, A.; Cokic, I.; et al. Chronic Manifestation of Postreperfusion Intramyocardial Hemorrhage as Regional Iron Deposition: A Cardiovascular Magnetic Resonance Study with Ex Vivo Validation. Circ Cardiovasc. Imaging 2013, 6, 218–228. https://doi.org/10.1161/CIRCIMAGING.112.000133.
  • 62.
    Bönner, F.; Gastl, M.; Nienhaus, F.; et al. Regional Analysis of Inflammation and Contractile Function in Reperfused Acute Myocardial Infarction by in vivo (19)F Cardiovascular Magnetic Resonance in Pigs. Basic. Res. Cardiol. 2022, 117, 21. https://doi.org/10.1007/s00395-022-00928-5.
  • 63.
    Xia, R.; He, B.; Zhu, T.; et al. Low-Dose Dobutamine Cardiovascular Magnetic Resonance Segmental Strain Study of Early Phase of Intramyocardial Hemorrhage Rats. BMC Med. Imaging 2021, 21, 173. https://doi.org/10.1186/s12880-021-00709-x.
  • 64.
    Tang, R.; Wang, K.; Xiong, Y.; et al. A Fluorescence Assay for Evaluating the Permeability of a Cardiac Microvascular Endothelial Barrier in a Rat Model of Ischemia/Reperfusion. J. Vis. Exp. 2021, 172, e62746.
  • 65.
    Liu, M.; Li, S.; Yin, M.; et al. Pinacidil Ameliorates Cardiac Microvascular Ischemia-Reperfusion Injury by Inhibiting Chaperone-Mediated Autophagy of Calreticulin. Basic. Res. Cardiol. 2024, 119, 113–131. https://doi.org/10.1007/s00395-023-01028-8.
  • 66.
    Chen, Z.; Li, S.; Liu, M.; et al. Nicorandil Alleviates Cardiac Microvascular Ferroptosis in Diabetic Cardiomyopathy: Role of the Mitochondria-Localized AMPK-Parkin-ACSL4 Signaling Pathway. Pharmacol. Res. 2024, 200, 107057. https://doi.org/10.1016/j.phrs.2024.107057.
  • 67.
    Klein, A.; Bayrau, B.; Miao, Y.; et al. Isolation of Endocardial and Coronary Endothelial Cells from the Ventricular Free Wall of the Rat Heart. JoVE 2020, 158, e61126. https://doi.org/10.3791/61126.
  • 68.
    Carrick, D.; Haig, C.; Ahmed, N.; et al. Myocardial Hemorrhage After Acute Reperfused ST-Segment–Elevation Myocardial Infarction: Relation to Microvascular Obstruction and Prognostic Significance. Circ Cardiovasc. Imaging 2016, 9, e004148. https://doi.org/10.1161/CIRCIMAGING.115.004148.
  • 69.
    Reimer, K.A.; Jennings, R.B. The “Wavefront Phenomenon” of Myocardial Ischemic Cell Death. II. Transmural Progression of Necrosis within the Framework of Ischemic Bed Size (Myocardium at Risk) and Collateral Flow. Lab. Investig. 1979, 40, 633–644.
  • 70.
    Amier, R.P.; Tijssen, R.Y.G.; Teunissen, P.F.A.; et al. Predictors of Intramyocardial Hemorrhage After Reperfused ST-Segment Elevation Myocardial Infarction. J. Am. Heart Assoc. 2017, 6, e005651. https://doi.org/10.1161/JAHA.117.005651.
  • 71.
    Jensen, C.J.; Eberle, H.C.; Nassenstein, K.; et al. Impact of Hyperglycemia at Admission in Patients with Acute ST-Segment Elevation Myocardial Infarction as Assessed by Contrast-Enhanced MRI. Clin. Res. Cardiol. 2011, 100, 649–659. https://doi.org/10.1007/s00392-011-0290-7.
  • 72.
    Ota, S.; Nishiguchi, T.; Taruya, A.; et al. Hyperglycemia and Intramyocardial Hemorrhage in Patients with ST-Segment Elevation Myocardial Infarction. J. Cardiol. 2022, 80, 456–461. https://doi.org/10.1016/j.jjcc.2022.06.003.
  • 73.
    Roos, S.T.; Timmers, L.; Biesbroek, P.S.; et al. No Benefit of Additional Treatment with Exenatide in Patients with an Acute Myocardial Infarction. Int. J. Cardiol. 2016, 220, 809–814. https://doi.org/10.1016/j.ijcard.2016.06.283.
  • 74.
    Yan, J.; Huang, B.; Tonko, J.; et al. Transthoracic Ultrasound Localization Microscopy of Myocardial Vasculature in Patients. Nat. Biomed. Eng. 2024, 8, 689–700. https://doi.org/10.1038/s41551-024-01206-6.
  • 75.
    Schaffer, C.B.; Friedman, B.; Nishimura, N.; et al. Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion. PLoS Biol. 2006, 4, e22. https://doi.org/10.1371/journal.pbio.0040022.
  • 76.
    Pian, Q.; Alfadhel, M.; Tang, J.; et al. Cortical Microvascular Blood Flow Velocity Mapping by Combining Dynamic Light Scattering Optical Coherence Tomography and Two-Photon Microscopy. JBO 2023, 28, 076003. https://doi.org/10.1117/1.JBO.28.7.076003.
  • 77.
    Li, B.; Yabluchanskiy, A.; Tarantini, S.; et al. Measurements of Cerebral Microvascular Blood Flow, Oxygenation, and Morphology in a Mouse Model of Whole-Brain Irradiation-Induced Cognitive Impairment by Two-Photon Microscopy and Optical Coherence Tomography: Evidence for Microvascular Injury in the Cerebral White Matter. GeroScience 2023, 45, 1491–1510. https://doi.org/10.1007/s11357-023-00735-3.
  • 78.
    Heusch, G. Myocardial Ischaemia-Reperfusion Injury and Cardioprotection in Perspective. Nat. Rev. Cardiol. 2020, 17, 773–789. https://doi.org/10.1038/s41569-020-0403-y.
Share this article:
How to Cite
Wang, Z.; Fang, L.; Lv, Y.; Wang, S.; Du, G. Coronary Microvascular Dysfunction: A Potential Intervention Strategy against Acute Myocardial Infarction. International Journal of Drug Discovery and Pharmacology 2025, 4 (1), 100004. https://doi.org/10.53941/ijddp.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.