- 1.
Fan, X.; Turdi, S.; Ford, S.P.; et al. Influence of gestational overfeeding on cardiac morphometry and hypertrophic protein markers in fetal sheep. J. Nutr. Biochem. 2011, 22, 30–37.
- 2.
Wang, L.; O'Kane, A.M.; Zhang, Y.; et al. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obes. Rev. 2023, 24, e13567.
- 3.
Wang, J.; Ma, H.; Tong, C.; et al. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J. 2010, 24, 2066–2076.
- 4.
Dong, F.; Ford, S.P.; Nijland, M.J.; et al. Influence of maternal undernutrition and overfeeding on cardiac ciliary neurotrophic factor receptor and ventricular size in fetal sheep. J. Nutr. Biochem. 2008, 19, 409–414.
- 5.
Kandadi, M.R.; Hua, Y.; Zhu, M.; et al. Influence of gestational overfeeding on myocardial proinflammatory mediators in fetal sheep heart. J. Nutr. Biochem. 2013, 24, 1982–1990.
- 6.
Diniz, M.S.; Grilo, L.F.; Tocantins, C.; et al. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites 2023, 13, 845.
- 7.
Zambrano, E.; Lomas-Soria, C.; Nathanielsz, P.W. Rodent studies of developmental programming and ageing mechanisms: Special issue: In utero and early life programming of ageing and disease. Eur. J. Clin. Investig. 2021, 51, e13631.
- 8.
Roberts, J.M.; Heider, D.; Bergman, L.; et al. Vision for Improving Pregnancy Health: Innovation and the Future of Pregnancy Research. Reprod. Sci. 2022, 29, 2908–2920.
- 9.
Huber, H.F.; Jenkins, S.L.; Li, C.; et al. Strength of nonhuman primate studies of developmental programming: Review of sample sizes, challenges, and steps for future work. J. Dev. Orig. Health Dis. 2020, 11, 297–306.
- 10.
Bar, J.; Weiner, E.; Levy, M.; et al. The thrifty phenotype hypothesis: The association between ultrasound and Doppler studies in fetal growth restriction and the development of adult disease. Am. J. Obstet. Gynecol. MFM 2021, 3, 100473.
- 11.
Vaag, A.A.; Grunnet, L.G.; et al. The thrifty phenotype hypothesis revisited. Diabetologia 2012, 55, 2085–2088.
- 12.
Hales, C.N.; Barker, D.J. The thrifty phenotype hypothesis. Br. Med. Bull. 2001, 60, 5–20.
- 13.
Godfrey, K.; Robinson, S. Maternal nutrition, placental growth and fetal programming. Proc. Nutr. Soc. 1998, 57, 105–111.
- 14.
Dong, M.; Zheng, Q.; Ford, S.P.; et al. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J. Mol. Cell Cardiol. 2013, 55, 111–116.
- 15.
Barker, D.J. Coronary heart disease: A disorder of growth. Horm. Res. 2003, 59 (Suppl. 1), 35–41.
- 16.
Barker, D.J.; Gelow, J.; Thornburg, K.; et al. The early origins of chronic heart failure: Impaired placental growth and initiation of insulin resistance in childhood. Eur. J. Heart Fail. 2010, 12, 819–825.
- 17.
Gupta, M.B.; Jansson, T. Novel roles of mechanistic target of rapamycin signaling in regulating fetal growthdagger. Biol. Reprod. 2019, 100, 872–884.
- 18.
Green, A.S.; Rozance, P.J.; Limesand, S.W. Consequences of a compromised intrauterine environment on islet function. J. Endocrinol. 2010, 205, 211–224.
- 19.
Dong, F.; Ford, S.P.; Fang, C.X.; et al. Maternal nutrient restriction during early to mid gestation up-regulates cardiac insulin-like growth factor (IGF) receptors associated with enlarged ventricular size in fetal sheep. Growth Horm. IGF Res. 2005, 15, 291–299.
- 20.
Tarry-Adkins, J.L.; Aiken, C.E.; Ashmore, T.J.; et al. Insulin-signalling dysregulation and inflammation is programmed trans-generationally in a female rat model of poor maternal nutrition. Sci. Rep. 2018, 8, 4014.
- 21.
Tarry-Adkins, J.L.; Fernandez-Twinn, D.S.; Madsen, R.; et al. Coenzyme Q10 Prevents Insulin Signaling Dysregulation and Inflammation Prior to Development of Insulin Resistance in Male Offspring of a Rat Model of Poor Maternal Nutrition and Accelerated Postnatal Growth. Endocrinology 2015, 156, 3528–3537.
- 22.
Ren, J.; Anversa, P. The insulin-like growth factor I system: Physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem. Pharmacol. 2015, 93, 409–417.
- 23.
Ajoolabady, A.; Chiong, M.; Lavandero, S.; et al. Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends Mol. Med. 2022, 28, 836–849.
- 24.
Zhang, Y.; Whaley-Connell, A.T.; Sowers, J.R.; et al. Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. Pharmacol. Ther. 2018, 191, 1–22.
- 25.
Han, H.C.; Austin, K.J.; Nathanielsz, P.W.; et al. Maternal nutrient restriction alters gene expression in the ovine fetal heart. J. Physiol. 2004, 558, 111–121.
- 26.
George, L.A.; Zhang, L.; Tuersunjiang, N.; et al. Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R795–R804.
- 27.
Peng, H.; Zhang, J.; Zhang, Z.; et al. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced cardiac anomalies through reconciliation of autophagy and ferroptosis. Life Sci. 2023, 328, 121821.
- 28.
Li, Q.; Wu, S.; Li, S.Y.; et al. Cardiac-specific overexpression of insulin-like growth factor 1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1398–H1403.
- 29.
Ren, J.; Wold, L.E. Measurement of Cardiac Mechanical Function in Isolated Ventricular Myocytes from Rats and Mice by Computerized Video-Based Imaging. Biol. Proced. Online 2001, 3, 43–53.
- 30.
Wang, Q.; Zhu, C.; Sun, M.; et al. Maternal obesity impairs fetal cardiomyocyte contractile function in sheep. FASEB J. 2019, 33, 2587–2598.
- 31.
Doser, T.A.; Turdi, S.; Thomas, D.P.; et al. Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction. Circulation 2009, 119, 1941–1949.
- 32.
Ge, W.; Hu, N.; George, L.A.; et al. Maternal nutrient restriction predisposes ventricular remodeling in adult sheep offspring. J. Nutr. Biochem. 2013, 24, 1258–1265.
- 33.
Sun, A.; Cheng, Y.; Zhang, Y.; et al. Aldehyde dehydrogenase 2 ameliorates doxorubicin-induced myocardial dysfunction through detoxification of 4-HNE and suppression of autophagy. J. Mol. Cell Cardiol. 2014, 71, 92–104.
- 34.
Turdi, S.; Han, X.; Huff, A.F.; et al. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: Role of autophagy. Free Radic. Biol. Med. 2012, 53, 1327–1338.
- 35.
Ma, H.; Li, J.; Gao, F.; et al. Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol: Role of protein phosphatase and forkhead transcription factor. J. Am. Coll. Cardiol. 2009, 54, 2187–2196.
- 36.
Masoumy, E.P.; Sawyer, A.A.; Sharma, S.; et al. The lifelong impact of fetal growth restriction on cardiac development. Pediatr. Res. 2018, 84, 537–544.
- 37.
Harvey, T.J.; Murphy, R.M.; Morrison, J.L.; et al. Maternal Nutrient Restriction Alters Ca2+ Handling Properties and Contractile Function of Isolated Left Ventricle Bundles in Male But Not Female Juvenile Rats. PLoS ONE 2015, 10, e0138388.
- 38.
Molaei, A.; Molaei, E.; Hayes, A.W.; et al. Mas receptor: A potential strategy in the management of ischemic cardiovascular diseases. Cell Cycle 2023, 22, 1654–1674.
- 39.
Lillo, R.; Graziani, F.; Franceschi, F.; et al. Inflammation across the spectrum of hypertrophic cardiac phenotypes. Heart Fail. Rev. 2023, 28, 1065–1075.
- 40.
Sriramula, S.; Haque, M.; Majid, D.S.; et al. Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 2008, 51, 1345–1351.
- 41.
Copps, K.D.; Hancer, N.J.; Opare-Ado, L.; et al. Irs1 serine 307 promotes insulin sensitivity in mice. Cell Metab. 2010, 11, 84–92.
- 42.
Sanz, R.L.; Inserra, F.; Garcia Menendez, S.; et al. Metabolic Syndrome and Cardiac Remodeling Due to Mitochondrial Oxidative Stress Involving Gliflozins and Sirtuins. Curr. Hypertens. Rep. 2023, 25, 91–106.
- 43.
Shao, J.; Yamashita, H.; Qiao, L.; et al. Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus. Diabetes 2002, 51, 19–29.
- 44.
Shao, J.; Catalano, P.M.; Yamashita, H.; et al. Decreased insulin receptor tyrosine kinase activity plasma cell membrane glycoprotein-1 overexpression in skeletal muscle from obese women with gestational diabetes mellitus (GDM): Evidence for increased serine/threonine phosphorylation in pregnancy and GDM. Diabetes 2000, 49, 603–610.
- 45.
Nair, S.; Ren, J. Autophagy and cardiovascular aging: Lesson learned from rapamycin. Cell Cycle 2012, 11, 2092–2099.
- 46.
Ren, J.; Wu, N.N.; Wang, S.; et al. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Physiol. Rev. 2021, 101, 1745–1807.
- 47.
Rouschop, S.H.; Snow, S.J.; Kodavanti, U.P.; et al. Perinatal High-Fat Diet Influences Ozone-Induced Responses on Pulmonary Oxidant Status and the Molecular Control of Mitophagy in Female Rat Offspring. Int. J. Mol. Sci. 2021, 22, 7551.
- 48.
Nathanielsz, P.W. A time to be born: Implications of animal studies in maternal-fetal medicine. Birth 1994, 21, 163–169.
- 49.
Milani-Nejad, N.; Janssen, P.M. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol. Ther. 2014, 141, 235–249.
- 50.
Davidoff, A.J.; Ren, J. Low insulin and high glucose induce abnormal relaxation in cultured adult rat ventricular myocytes. Am. J. Physiol. 1997, 272, H159–H167.
- 51.
Park, J.E.; Kang, E.; Han, J.S. HM-chromanone attenuates TNF-alpha-mediated inflammation and insulin resistance by controlling JNK activation and NF-kappaB pathway in 3T3-L1 adipocytes. Eur. J. Pharmacol. 2022, 921, 174884.
- 52.
Jacob Berger, A.; Gigi, E.; Kupershmidt, L.; et al. IRS1 phosphorylation underlies the non-stochastic probability of cancer cells to persist during EGFR inhibition therapy. Nat. Cancer 2021, 2, 1055–1070.
- 53.
Huang, S.L.; Xie, W.; Ye, Y.L.; et al. Coronarin A modulated hepatic glycogen synthesis and gluconeogenesis via inhibiting mTORC1/S6K1 signaling and ameliorated glucose homeostasis of diabetic mice. Acta Pharmacol. Sin. 2023, 44, 596–609.
- 54.
Moll, L.; Ben-Gedalya, T.; Reuveni, H.; et al. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB J. 2016, 30, 1656–1669.
- 55.
Garcia-Contreras, C.; Vazquez-Gomez, M.; Pesantez-Pacheco, J.L.; et al. Maternal Metformin Treatment Improves Developmental and Metabolic Traits of IUGR Fetuses. Biomolecules 2019, 9, 166.
- 56.
Gatford, K.L.; Houda, C.M.; Lu, Z.X.; et al. Vitamin B12 and homocysteine status during pregnancy in the metformin in gestational diabetes trial: Responses to maternal metformin compared with insulin treatment. Diabetes Obes. Metab. 2013, 15, 660–667.