2504000187
  • Open Access
  • Review
Modeling Arrhythmia in a Dish: An Open View from Human-Engineered Heart Constructs
  • Shiya Wang 1, †,   
  • Pengcheng Yang 1, 2, †,   
  • Jonathan Nimal Selvaraj 1, *,   
  • Donghui Zhang 1, 3, *

Received: 26 Jul 2024 | Revised: 29 Sep 2024 | Accepted: 30 Sep 2024 | Published: 06 Feb 2025

Abstract

Human-engineered heart constructs (hEHC), comprising cardiac organoids and engineered heart tissues, have become essential for replicating pathological and physiological mechanisms associated with cardiac development and diseases. The ongoing advancements in fabrication and culture techniques for these constructs have rendered them increasingly vital for cardiotoxicity prediction and drug efficacy evaluations. There is an escalating demand for standardized methodologies encompassing uniform fabrication, accurate disease modeling, and multidimensional phenotype assessments to facilitate a comprehensive understanding of these constructs. This review systematically examines hEHC, highlighting recent advancements in their cellular composition and functional characteristics, while stressing the necessity for thorough evaluations of significant heart disease phenotype, particularly in arrhythmia. Here, we propose a novel modular classification of cardiac model development based on specific modeling parameters and categorize existing research on in vitro functional assessment into various quantitative metrics. This classification framework provides researchers with innovative insights and strategies for personalized model design and evaluation.

References 

  • 1.
    Blackwell, D.J.; Schmeckpeper, J.; Knollmann, B.C. Animal Models to Study Cardiac Arrhythmias. Circ. Res. 2022, 130, 1926–1964. https://doi.org/10.1161/CIRCRESAHA.122.320258.
  • 2.
    Clauss, S.; Bleyer, C.; Schuttler, D.; et al. Animal models of arrhythmia: Classic electrophysiology to genetically modified large animals. Nat. Rev. Cardiol. 2019, 16, 457–475. https://doi.org/10.1038/s41569-019-0179-0.
  • 3.
    Zhou, B.; Shi, X.; Tang, X.; et al. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct. Target. Ther. 2022, 7, 254. https://doi.org/10.1038/s41392-022-01044-5.
  • 4.
    Batista Napotnik, T.; Kos, B.; Jarm, T.; et al. Genetically engineered HEK cells as a valuable tool for studying electroporation in excitable cells. Sci. Rep. 2024, 14, 720. https://doi.org/10.1038/s41598-023-51073-5.
  • 5.
    Liang, P.; Lan, F.; Lee, A.S.; et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 2013, 127, 1677–1691. https://doi.org/10.1161/CIRCULATIONAHA.113.001883.
  • 6.
    Levy, N. The use of animal as models: Ethical considerations. Int. J. Stroke 2012, 7, 440–442. https://doi.org/10.1111/j.1747-4949.2012.00772.x.
  • 7.
    Mukherjee, P.; Roy, S.; Ghosh, D.; et al. Role of animal models in biomedical research: A review. Lab. Anim. Res. 2022, 38, 18. https://doi.org/10.1186/s42826-022-00128-1.
  • 8.
    Farzadfar, F. Cardiovascular disease risk prediction models: Challenges and perspectives. Lancet Glob. Health 2019, 7, e1288–e1289. https://doi.org/10.1016/S2214-109X(19)30365-1.
  • 9.
    Lian, X.; Zhang, J.; Azarin, S.M.; et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat. Protoc. 2013, 8, 162–175. https://doi.org/10.1038/nprot.2012.150.
  • 10.
    Lian, X.; Bao, X.; Zilberter, M.; et al. Chemically defined, albumin-free human cardiomyocyte generation. Nat. Methods 2015, 12, 595–596. https://doi.org/10.1038/nmeth.3448.
  • 11.
    Zhang, H.; Tian, L.; Shen, M.; et al. Generation of Quiescent Cardiac Fibroblasts From Human Induced Pluripotent Stem Cells for In Vitro Modeling of Cardiac Fibrosis. Circ. Res. 2019, 125, 552–566. https://doi.org/10.1161/CIRCRESAHA.119.315491.
  • 12.
    Zhang, J.; Tao, R.; Campbell, K.F.; et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat. Commun. 2019, 10, 2238. https://doi.org/10.1038/s41467-019-09831-5.
  • 13.
    Paik, D.T.; Tian, L.; Lee, J.; et al. Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circ. Res. 2018, 123, 443–450. https://doi.org/10.1161/CIRCRESAHA.118.312913.
  • 14.
    Wang, K.; Lin, R.-Z.; Hong, X.; et al. Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Sci. Adv. 2020, 6, eaba7606. https://doi.org/10.1126/sciadv.aba7606.
  • 15.
    Cho, S.; Discher, D.E.; Leong, K.W.; et al. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat. Methods 2022, 19, 1064–1071. https://doi.org/10.1038/s41592-022-01591-3.
  • 16.
    Liu, C.; Feng, X.; Li, G.; et al. Generating 3D human cardiac constructs from pluripotent stem cells. EBioMedicine 2022, 76, 103813. https://doi.org/10.1016/j.ebiom.2022.103813.
  • 17.
    Ma, Z.; Wang, J.; Loskill, P.; et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 2015, 6, 7413. https://doi.org/10.1038/ncomms8413.
  • 18.
    Hoang, P.; Wang, J.; Conklin, B.R.; et al. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat. Protoc. 2018, 13, 723–737. https://doi.org/10.1038/nprot.2018.006.
  • 19.
    Drakhlis, L.; Biswanath, S.; Farr, C.-M.; et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 2021, 39, 737–746. https://doi.org/10.1038/s41587-021-00815-9.
  • 20.
    Harary, I.; Farley, B. In vitro Organization of Single Beating Rat Heart Cells into Beating Fibers. Science 1960, 132, 1839–1840, doi:doi:10.1126/science.132.3442.1839.
  • 21.
    Halbert, S.P.; Bruderer, R.; Lin, T.M.In vitro organization of dissociated rat cardiac cells into beating three-dimensional structures. J. Exp. Med. 1971, 133, 677–695. https://doi.org/10.1084/jem.133.4.677.
  • 22.
    Lieberman, M.; Roggeveen, A.E.; Purdy, J.E.; et al. Synthetic Strands of Cardiac Muscle: Growth and Physiological Implication. Science 1972, 175, 909–911, doi:doi:10.1126/science.175.4024.909.
  • 23.
    Eschenhagen, T.; Fink, C.; Remmers, U.; et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB J. 1997, 11, 683–694. https://doi.org/10.1096/fasebj.11.8.9240969.
  • 24.
    Zimmermann, W.H.; Fink, C.; Kralisch, D.; et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 2000, 68, 106–114.
  • 25.
    Zhou, P.; Pu, W.T. Recounting Cardiac Cellular Composition. Circ. Res. 2016, 118, 368–370. https://doi.org/10.1161/CIRCRESAHA.116.308139.
  • 26.
    Guo, Y.; Pu, W.T. Cardiomyocyte Maturation: New Phase in Development. Circ. Res. 2020, 126, 1086–1106. https://doi.org/10.1161/CIRCRESAHA.119.315862.
  • 27.
    Forte, E.; Furtado, M.B.; Rosenthal, N.The interstitium in cardiac repair: Role of the immune-stromal cell interplay. Nat. Rev. Cardiol. 2018, 15, 601–616. https://doi.org/10.1038/s41569-018-0077-x.
  • 28.
    Forte, E.; Skelly, D.A.; Chen, M.; et al. Dynamic Interstitial Cell Response during Myocardial Infarction Predicts Resilience to Rupture in Genetically Diverse Mice. Cell Rep. 2020, 30, 3149–3163 e3146. https://doi.org/10.1016/j.celrep.2020.02.008.
  • 29.
    Caspi, O.; Lesman, A.; Basevitch, Y.; et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 2007, 100, 263–272. https://doi.org/10.1161/01.RES.0000257776.05673.ff.
  • 30.
    Stevens, K.R.; Kreutziger, K.L.; Dupras, S.K.; et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl. Acad. Sci. USA 2009, 106, 16568–16573. https://doi.org/10.1073/pnas.0908381106.
  • 31.
    Zhang, D.; Shadrin, I.Y.; Lam, J.; et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 2013, 34, 5813–5820. https://doi.org/10.1016/j.biomaterials.2013.04.026.
  • 32.
    Thavandiran, N.; Dubois, N.; Mikryukov, A.; et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc. Natl. Acad. Sci. USA 2013, 110, E4698–E4707. https://doi.org/10.1073/pnas.1311120110.
  • 33.
    Roberts, M.A.; Tran, D.; Coulombe, K.L.; et al. Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue. Tissue Eng. Part. A 2016, 22, 633–644. https://doi.org/10.1089/ten.TEA.2015.0482.
  • 34.
    Yang, X.; Murry, C.E. One Stride Forward: Maturation and Scalable Production of Engineered Human Myocardium. Circulation 2017, 135, 1848–1850. https://doi.org/10.1161/CIRCULATIONAHA.117.024751.
  • 35.
    Tiburcy, M.; Hudson, J.E.; Balfanz, P.; et al. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation 2017, 135, 1832–1847. https://doi.org/10.1161/CIRCULATIONAHA.116.024145.
  • 36.
    Bargehr, J.; Ong, L.P.; Colzani, M.; et al. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat. Biotechnol. 2019, 37, 895–906. https://doi.org/10.1038/s41587-019-0197-9.
  • 37.
    Giacomelli, E.; Meraviglia, V.; Campostrini, G.; et al. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 2020, 26, 862–879.e11. https://doi.org/10.1016/j.stem.2020.05.004.
  • 38.
    Lou, X.; Tang, Y.; Ye, L.; et al. Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice. Cardiovasc. Res. 2023, 119, 1062–1076. https://doi.org/10.1093/cvr/cvad004.
  • 39.
    Voges, H.K.; Foster, S.R.; Reynolds, L.; et al. Vascular cells improve functionality of human cardiac organoids. Cell Rep. 2023, 42, 112322. https://doi.org/10.1016/j.celrep.2023.112322.
  • 40.
    Munawar, S.; Turnbull, I.C.Cardiac Tissue Engineering: Inclusion of Non-cardiomyocytes for Enhanced Features. Front. Cell Dev. Biol. 2021, 9, 653127. https://doi.org/10.3389/fcell.2021.653127.
  • 41.
    Floy, M.E.; Dunn, K.K.; Mateyka, T.D.; et al. Direct coculture of human pluripotent stem cell-derived cardiac progenitor cells with epicardial cells induces cardiomyocyte proliferation and reduces sarcomere organization. J. Mol. Cell Cardiol. 2022, 162, 144–157. https://doi.org/10.1016/j.yjmcc.2021.09.009.
  • 42.
    Shadrin, I.Y.; Allen, B.W.; Qian, Y.; et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 2017, 8, 1825. https://doi.org/10.1038/s41467-017-01946-x.
  • 43.
    Huebsch, N.; Charrez, B.; Neiman, G.; et al. Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat. Biomed. Eng. 2022, 6, 372–388. https://doi.org/10.1038/s41551-022-00884-4.
  • 44.
    Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018, 556, 239–243. https://doi.org/10.1038/s41586-018-0016-3.
  • 45.
    Zhao, Y.; Rafatian, N.; Feric, N.T.; et al. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell 2019, 176, 913–927.e18. https://doi.org/10.1016/j.cell.2018.11.042.
  • 46.
    Abilez, O.J.; Tzatzalos, E.; Yang, H.; et al. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells 2018, 36, 265–277. https://doi.org/10.1002/stem.2732.
  • 47.
    Leonard, A.; Bertero, A.; Powers, J.D.; et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J. Mol. Cell Cardiol. 2018, 118, 147–158. https://doi.org/10.1016/j.yjmcc.2018.03.016.
  • 48.
    Zhang, D.; Pu, W.T. Exercising engineered heart muscle to maturity. Nat. Rev. Cardiol. 2018, 15, 383–384. https://doi.org/10.1038/s41569-018-0032-x.
  • 49.
    Durrer, D.; van Dam, R.T.; Freud, G.E.; et al. Total excitation of the isolated human heart. Circulation 1970, 41, 899–912. https://doi.org/10.1161/01.cir.41.6.899.
  • 50.
    Drakhlis, L.; Zweigerdt, R.Heart in a dish—Choosing the right in vitro model. Dis. Model. Mech.2023, 16, dmm049961. https://doi.org/10.1242/dmm.049961.
  • 51.
    Grune, J.; Yamazoe, M.; Nahrendorf, M. Electroimmunology and cardiac arrhythmia. Nat. Rev. Cardiol. 2021, 18, 547–564. https://doi.org/10.1038/s41569-021-00520-9.
  • 52.
    Tisdale, J.E.; Chung, M.K.; Campbell, K.B.; et al. Drug-Induced Arrhythmias: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e214–e233. https://doi.org/10.1161/CIR.0000000000000905.
  • 53.
    Peretto, G.; Sala, S.; Rizzo, S.; et al. Ventricular Arrhythmias in Myocarditis: Characterization and Relationships With Myocardial Inflammation. J. Am. Coll. Cardiol. 2020, 75, 1046–1057. https://doi.org/10.1016/j.jacc.2020.01.036.
  • 54.
    Sepehri Shamloo, A.; Bunch, T.J.; Lin, Y.J.; et al. Risk Assessment in Cardiac Arrhythmias. Eur. Heart J. 2020, 41, 4455–4457. https://doi.org/10.1093/eurheartj/ehaa808.
  • 55.
    Järvensivu-Koivunen, M.; Tynkkynen, J.; Oksala, N.; et al. Ventricular arrhythmias and haemodynamic collapse during acute coronary syndrome: Increased risk for sudden cardiac death? Eur. J. Prev. Cardiol. 2024, zwae074. https://doi.org/10.1093/eurjpc/zwae074.
  • 56.
    Lemoine, M.D.; Krause, T.; Koivumaki, J.T.; et al. Human Induced Pluripotent Stem Cell-Derived Engineered Heart Tissue as a Sensitive Test System for QT Prolongation and Arrhythmic Triggers. Circ. Arrhythm. Electrophysiol. 2018, 11, e006035. https://doi.org/10.1161/CIRCEP.117.006035.
  • 57.
    Goldfracht, I.; Efraim, Y.; Shinnawi, R.; et al. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater. 2019, 92, 145–159. https://doi.org/10.1016/j.actbio.2019.05.016.
  • 58.
    Goldfracht, I.; Protze, S.; Shiti, A.; et al. Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat. Commun. 2020, 11, 75. https://doi.org/10.1038/s41467-019-13868-x.
  • 59.
    Kawatou, M.; Masumoto, H.; Fukushima, H.; et al. Modelling Torsade de Pointes arrhythmias in vitro in 3D human iPS cell-engineered heart tissue. Nat. Commun. 2017, 8, 1078. https://doi.org/10.1038/s41467-017-01125-y.
  • 60.
    Min, S.; Kim, S.; Sim, W.S.; et al. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nat. Commun. 2024, 15, 2564. https://doi.org/10.1038/s41467-024-46928-y.
  • 61.
    Pellman, J.; Zhang, J.; Sheikh, F.Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. J. Mol. Cell Cardiol. 2016, 94, 22–31. https://doi.org/10.1016/j.yjmcc.2016.03.005.
  • 62.
    Wang, Y.; Li, Q.; Tao, B.; et al. Fibroblasts in heart scar tissue directly regulate cardiac excitability and arrhythmogenesis. Science 2023, 381, 1480–1487. https://doi.org/10.1126/science.adh9925.
  • 63.
    Ghosheh, M.; Ehrlich, A.; Ioannidis, K.; et al. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids. Nat. Biomed. Eng. 2023, 7, 1493–1513. https://doi.org/10.1038/s41551-023-01071-9.
  • 64.
    Lemme, M.; Braren, I.; Prondzynski, M.; et al. Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue. Cardiovasc. Res. 2020, 116, 1487–1499. https://doi.org/10.1093/cvr/cvz245.
  • 65.
    Hofbauer, P.; Jahnel, S.M.; Papai, N.; et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 2021, 184, 3299–3317 e3222. https://doi.org/10.1016/j.cell.2021.04.034.
  • 66.
    Kofron, C.M.; Kim, T.Y.; Munarin, F.; et al. A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci. Rep. 2021, 11, 10228. https://doi.org/10.1038/s41598-021-89478-9.
  • 67.
    Williams, K.; Liang, T.; Masse, S.; et al. A 3-D human model of complex cardiac arrhythmias. Acta Biomater. 2021, 132, 149–161. https://doi.org/10.1016/j.actbio.2021.03.004.
  • 68.
    Lu, F.; Pu, W.T. The architecture and function of cardiac dyads. Biophys. Rev. 2020, 12, 1007–1017. https://doi.org/10.1007/s12551-020-00729-x.
  • 69.
    Liang, W.; Gasparyan, L.; AlQarawi, W.; et al. Disease modeling of cardiac arrhythmias using human induced pluripotent stem cells. Expert. Opin. Biol. Ther. 2019, 19, 313–333. https://doi.org/10.1080/14712598.2019.1575359.
  • 70.
    Campostrini, G.; Kosmidis, G.; Ward-van Oostwaard, D.; et al. Maturation of hiPSC-derived cardiomyocytes promotes adult alternative splicing of SCN5A and reveals changes in sodium current associated with cardiac arrhythmia. Cardiovasc. Res. 2023, 119, 167–182. https://doi.org/10.1093/cvr/cvac059.
  • 71.
    Li, J.; Wiesinger, A.; Fokkert, L.; et al. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell 2024. https://doi.org/10.1016/j.stem.2024.08.008.
  • 72.
    Hulsmans, M.; Clauss, S.; Xiao, L.; et al. Macrophages Facilitate Electrical Conduction in the Heart. Cell 2017, 169, 510–522 e520. https://doi.org/10.1016/j.cell.2017.03.050.
  • 73.
    Rajendran, P.S.; Hadaya, J.; Khalsa, S.S.; et al. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Semin. Cell Dev. Biol. 2024, 156, 190–200. https://doi.org/10.1016/j.semcdb.2023.01.001.
  • 74.
    Chen, W.G.; Schloesser, D.; Arensdorf, A.M.; et al. The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self. Trends Neurosci. 2021, 44, 3–16. https://doi.org/10.1016/j.tins.2020.10.007.
Share this article:
How to Cite
Wang, S.; Yang, P.; Selvaraj, J. N.; Zhang, D. Modeling Arrhythmia in a Dish: An Open View from Human-Engineered Heart Constructs. International Journal of Drug Discovery and Pharmacology 2025, 4 (1), 100001. https://doi.org/10.53941/ijddp.2025.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.