2504000188
  • Open Access
  • Review
Exploring Fungi Within the Human Gut Microbiota: Obstacles, Innovations, Therapeutic Applications and Prospects Ahead
  • Peng Xue 1, †,   
  • Chao Luo 2, †,   
  • Jiashu Li 3,   
  • Liang Yang 3, *,   
  • Yuanyuan Ma 1, *

Received: 15 Sep 2024 | Revised: 23 Oct 2024 | Accepted: 23 Oct 2024 | Published: 09 Apr 2025

Abstract

Fungi in the human gut microbiota participate in the maintenance of health and regulation of physiological processes. This review examines the complex role of gut fungi, highlighting challenges such as diverse fungal populations, cultivation difficulties, and knowledge gaps in their functional roles. Recent advancements in metagenomics and metabolomics have enabled innovative investigations into fungal communities, revealing their influence on host metabolism and immune responses. Future research should address the existing knowledge gaps and explore the therapeutic applications of gut fungi. Interdisciplinary collaborations and new methodologies are proposed to enhance the current understanding of fungi-host interactions, ultimately improving health outcomes and guide the development of novel treatment strategies. This review emphasizes the need to integrate fungal research into microbiome studies to provide a comprehensive understanding of gut health.

References 

  • 1.
    Almeida, A.; Mitchell, A.L.; Boland, M.; et al. A new genomic blueprint of the human gut microbiota. Nature 2019, 568, 499–504.
  • 2.
    Leviatan, S.; Shoer, S.; Rothschild, D.; et al. An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species. Nat. Commun. 2022, 13, 3863.
  • 3.
    Yan, Q.; Li, S.; Yan, Q.; et al. A genomic compendium of cultivated human gut fungi characterizes the gut mycobiome and its relevance to common diseases. Cell 2024, 187, 2969–2989.
  • 4.
    Garcia-Bonete, M.J.; Rajan, A.; Suriano, F.; et al. The underrated gut microbiota helminths, bacteriophages, fungi, and archaea. Life 2023, 13, 1765.
  • 5.
    Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71.
  • 6.
    Woźniak, D.; Cichy, W.; Przysławski, J.; et al. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv. Med. Sci. 2021, 66, 284–292.
  • 7.
    Chu, J.; Feng, S.; Guo, C.; et al. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed. Pharmacother. 2023, 164, 114985.
  • 8.
    Colella, M.; Charitos, I.A.; Ballini, A.; et al. Microbiota revolution: How gut microbes regulate our lives. World J. Gastroenterol. 2023, 29, 4368.
  • 9.
    Zhou Y.-D.; Liang F.-X.; Tian H.-R.; et al. Mechanisms of gut microbiota-immune-host interaction on glucose regulation in type 2 diabetes. Front. Microbiol. 2023, 14, 1121695.
  • 10.
    Fujisaka, S.; Watanabe, Y.; Tobe, K. The gut microbiome: A core regulator of metabolism. J. Endocrinol. 2023, 256, e220111.
  • 11.
    Kim, S.; Seo S.-U.; Kweon M.-N. Gut microbiota-derived metabolites tune host homeostasis fate. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2024; p. 2.
  • 12.
    Chen, L.; Zhang, L.; Hua, H.; et al. Interactions between toll-like receptors signaling pathway and gut microbiota in host homeostasis. Immun. Inflamm. Dis. 2024, 12, e1356.
  • 13.
    Huseyin, C.E.; O’Toole, P.W.; Cotter, P.D.; et al. Forgotten fungi—The gut mycobiome in human health and disease. FEMS Microbiol. Rev. 2017, 41, 479–511.
  • 14.
    Di Paola, M.; Rizzetto, L.; Stefanini, I.; et al. Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn’s disease patients and their interactions with the gut microbiome. J. Transl. Autoimmun. 2020, 3, 100036.
  • 15.
    Peroumal, D.; Sahu, S.R.; Kumari, P.; et al. Commensal fungus Candida albicans maintains a long-term mutualistic relationship with the host to modulate gut microbiota and metabolism. Microbiol. Spectr. 2022, 10, e02462-22.
  • 16.
    Wang, X.; Wu, S.; Li, L.; et al. Candida albicans overgrowth disrupts the gut microbiota in mice bearing oral cancer. Mycology 2024, 15, 57–69.
  • 17.
    Pérez, J.C. Fungi of the human gut microbiota: Roles and significance. Int. J. Med. Microbiol. 2021, 311, 151490.
  • 18.
    Richard, M.L.; Sokol, H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 331–345.
  • 19.
    Zhai, B.; Liao, C.; Jaggavarapu, S.; et al. Antifungal heteroresistance causes prophylaxis failure and facilitates breakthrough Candida parapsilosis infections. Nat. Med. 2024, 30, 3163–3172.
  • 20.
    Bayoumy, A.B.; Mulder, C.J.J.; Mol, J.J.; et al. Gut fermentation syndrome: A systematic review of case reports. United Eur. Gastroenterol. J. 2021, 9, 332–342.
  • 21.
    Demir, M.; Lang, S.; Hartmann, P.; et al. The fecal mycobiome in non-alcoholic fatty liver disease. J. Hepatol. 2022, 76, 788–799.
  • 22.
    Hallen-Adams, H.E.; Suhr M.J. Fungi in the healthy human gastrointestinal tract. Virulence 2017, 8, 352–358.
  • 23.
    Liu, T.; Asif, I.M.; Chen, Y.; et al. The Relationship between Diet, Gut Mycobiome, and Functional Gastrointestinal Disorders: Evidence, Doubts, and Prospects. Mol. Nutr. Food Res. 2024, 68, e2300382.
  • 24.
    Kumamoto, C.A.; Gresnigt, M.S.; Hube, B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr. Opin. Microbiol. 2020, 56, 7–15.
  • 25.
    d’Enfert, C.; Kaune, A.K.; Alaban, L.R.; et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2021, 45, fuaa060.
  • 26.
    Boutin, R.C.T.; Sbihi, H.; McLaughlin, R.J.; et al. Composition and Associations of the Infant Gut Fungal Microbiota with Environmental Factors and Childhood Allergic Outcomes. mBio 2021, 12, e0339620.
  • 27.
    Maas, E.; Penders, J. Fungal-Bacterial Interactions in the Human Gut of Healthy Individuals. J. Fungi 2023, 9, 139.
  • 28.
    Termén, S.; Tollin, M.; Rodriguez, E.; et al. PU.1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol. Immunol. 2008, 45, 3947–3955.
  • 29.
    Islam, K.B.; Fukiya, S.; Hagio, M.; et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011, 141, 1773–1781.
  • 30.
    Tang, W.H.W.; Li, D.Y.; Hazen S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 2019, 16, 137–154.
  • 31.
    Qu, R.; Zhang, Y.; Ma, Y.; et al. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. Adv. Sci. 2023, 10, e2205563.
  • 32.
    Chen, J.; Vitetta, L. Intestinal dysbiosis in celiac disease: Decreased butyrate production may facilitate the onset of the disease. Proc. Natl. Acad. Sci. USA 2021, 118, e2113655118.
  • 33.
    Waclawiková B.; Codutti, A.; Alim, K.; et al. Gut microbiota-motility interregulation: Insights from in vivo, ex vivo and in silico studies. Gut Microbes 2022, 14, 1997296.
  • 34.
    Wang, J.; Zhu, N.; Su, X.; et al. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023, 12, 793.
  • 35.
    Gao, B.; Chi, L.; Zhu, Y. An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules 2021, 11, 530.
  • 36.
    Li, X.V.; Leonardi, I. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022, 603, 672–678. Erratum in Nature 2022, 608, E21.
  • 37.
    Gasch, A.P.; Yu, F.B.; Hose, J.; et al. Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLoS Biol. 2017, 15, e2004050.
  • 38.
    Nadal-Ribelles, M.; Islam, S.; Wei, W. Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations. Nat. Microbiol. 2019, 4, 683–692.
  • 39.
    Saint, M.; Bertaux, F. Single-cell imaging and RNA sequencing reveal patterns of gene expression heterogeneity during fission yeast growth and adaptation. Nat. Microbiol. 2019, 4, 480–491.
  • 40.
    Chetty, A.; Blekhman, R. Multi-omic approaches for host-microbiome data integration. Gut Microbes. 2024, 16, 2297860.
  • 41.
    Ost, K.S.; Round J.L. Commensal fungi in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 723–734.
Share this article:
How to Cite
Xue, P.; Luo, C.; Li, J.; Yang, L.; Ma, Y. Exploring Fungi Within the Human Gut Microbiota: Obstacles, Innovations, Therapeutic Applications and Prospects Ahead. International Journal of Drug Discovery and Pharmacology 2025, 4 (2), 100007. https://doi.org/10.53941/ijddp.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.