- 1.
Bers, D.M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205.
- 2.
Barbagallo, F.; Xu, B.; Reddy, G.R.; et al. Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circ. Res. 2016, 119, 931–943.
- 3.
Liaudet, L.; Calderari, B.; Pacher, P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail. Rev. 2014, 19, 815–824.
- 4.
Song, Y.; WOO, AY-H.; Zhang, Y.; et al. Cardiac β-Adrenoceptor signaling: The new insight on an old target in the therapy of cardiovascular disease. IJDDP 2022, 1, 3.
- 5.
Kvetnansky, R.; Sabban, E.L.; Palkovits, M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol, Rev. 2009, 89, 535–606.
- 6.
Ebert, S.N.; Rong, Q.; Boe, S.; et al. Catecholamine-synthesizing cells in the embryonic mouse heart. Ann, N, Y, Acad, Sci. 2008, 1148, 317–324.
- 7.
Tillinger, A.; Novakova, M.; Pavlovicova, M.; et al. Modulation by 6-hydroxydopamine of expression of the phenylethanolamine N-methyltransferase (PNMT) gene in the rat heart during immobilization stress. Stress 2006, 9, 207–213.
- 8.
Nash, C.A.; Wei, W.; Irannejad, R.; et al. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. Elife 2019, 8, e48167.
- 9.
Wang, Y.; Shi, Q.; Li, M.; et al. Intracellular β1-Adrenergic Receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circ. Res. 2021, 128, 246–261.
- 10.
Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol. Rev. 2004, 56, 331–349.
- 11.
Schlessinger, A.; Geier, E.; Fan, H.; et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 15810–15815.
- 12.
Backs, J.; Haunstetter, A.; Gerber, S.H.; et al. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J. Mol. Cell. Cardiol. 2001, 33, 461–472.
- 13.
Münch, G.; Rosport, K.; Bültmann, A.; et al. Cardiac overexpression of the norepinephrine transporter uptake-1 results in marked improvement of heart failure. Circ. Res. 2005, 97, 928–936.
- 14.
Recchia, F.A.; Giacca, M. Targeted uptake-1 carrier to rescue the failing heart. Circ. Res. 2005, 97, 847–849.
- 15.
Wang, Y.; Zhao, M.; Shi, Q.; et al. Monoamine Oxidases Desensitize Intracellular β1AR Signaling in Heart Failure. Circ. Res. 2021, 129, 965–967.
- 16.
Hall, K.T.; Battinelli, E.; Chasman, D.I. Catechol-O-Methyltransferase and Cardiovascular Disease: MESA. J. Am. Heart Assoc. 2019, 8, e014986.
- 17.
Motiejunaite, J.; Amar, L.; Vidal-Petiot, E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol (Paris). 2021, 82, 193–197.
- 18.
Gardner, R.T.; Ripplinger, C.M.; Myles, R.C.; et al. Molecular Mechanisms of Sympathetic Remodeling and Arrhythmias. Circ. Arrhythm. Electrophysiol. 2016, 9, e001359.
- 19.
Francis Stuart, S.D.; Wang, L.; Woodard, W.R.; et al. Age-related changes in cardiac electrophysiology and calcium handling in response to sympathetic nerve stimulation. J. Physiol. 2018, 596, 3977–3991.
- 20.
Rubart, M.; Zipes, D.P. Mechanisms of sudden cardiac death. J. Clin. Invest. 2005, 115, 2305–2315.
- 21.
Myles, R.C.; Wang, L.; Kang, C.; et al. Local β-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ. Res. 2012, 110, 1454–1464.
- 22.
Myles, R.C.; Wang, L.; Bers, D.M.; et al. Decreased inward rectifying K+ current and increased ryanodine receptor sensitivity synergistically contribute to sustained focal arrhythmia in the intact rabbit heart. J. Physiol. 2015, 593, 1479–1493.
- 23.
Keller, N.R.; Diedrich, A.; Appalsamy, M.; et al. Norepinephrine transporter-deficient mice exhibit excessive tachycardia and elevated blood pressure with wakefulness and activity. Circulation 2004, 110, 1191–1196.
- 24.
Xiao, R.P.; Zhang, S.J.; Chakir, K.; et al. Enhanced G(i) signaling selectively negates beta2-adrenergic receptor (AR)--but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts. Circulation 2003, 108, 1633–1639.
- 25.
Wang, Y.; Zhao, M.; Xu, B.; et al. Monoamine oxidase A and organic cation transporter 3 coordinate intracellular β1AR signaling to calibrate cardiac contractile function. Basic Res. Cardiol. 2022, 117, 37.
- 26.
Xu, B.; Li, M.; Wang, Y.; et al. GRK5 Controls SAP97-Dependent Cardiotoxic β1 Adrenergic Receptor-CaMKII Signaling in Heart Failure. Circ. Res. 2020, 127, 796–810.
- 27.
Pogwizd, S.M.; Schlotthauer, K.; Li, L.; et al. Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 2001, 88, 1159–1167.
- 28.
Qin, F.; Vulapalli, R.S.; Stevens, S.Y.; et al. Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H363–H371.
- 29.
Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J. Am. Coll. Cardiol. 1989, 14, 1519–1526.
- 30.
Hartikainen, J.; Kuikka, J.; Mäntysaari, M.; et al. Sympathetic reinnervation after acute myocardial infarction. Am. J. Cardiol. 1996, 77, 5–9.
- 31.
Eschenhagen, T. Is Stimulation of Cardiomyocyte Renewal a Facette of Reversible Catecholamine Toxicity? Circ. Res. 2016, 119, 779–781.
- 32.
Wallner, M.; Duran, J.M.; Mohsin, S.; et al. Acute Catecholamine Exposure Causes Reversible Myocyte Injury Without Cardiac Regeneration. Circ. Res. 2016, 119, 865–879.
- 33.
Rona, G. Catecholamine cardiotoxicity. J. Mol. Cell. Cardiol. 1985, 17, 291–306.
- 34.
Du, Y.; Demillard, L.J.; Ren, J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci. 2021, 287, 120106.
- 35.
Xiao, H.; Li, H.; Wang, J.J.; et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur. Heart, J. 2018, 39, 60–69.
- 36.
Meier, H.; Bullinger, J.; Marx, G.; et al. Crucial role of interleukin-6 in the development of norepinephrine-induced left ventricular remodeling in mice. Cell. Physiol. Biochem. 2009, 23, 327–334.
- 37.
Wang, Y.; Hu, H.; Yin, J.; et al. TLR4 participates in sympathetic hyperactivity Post-MI in the PVN by regulating NF-κB pathway and ROS production. Redox. Biol. 2019, 24, 101186.
- 38.
Costa, V.M.; Carvalho, F.; Bastos, M.L.; et al. Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Curr. Med. Chem. 2011, 18, 2272–2314.
- 39.
Kaludercic, N.; Mialet-Perez, J.; Paolocci, N.; et al. Parini A, Di Lisa, F. Monoamine oxidases as sources of oxidants in the heart. J. Mol. Cell. Cardiol. 2014, 73, 34–42.
- 40.
Di Sante, M.; Antonucci, S.; Pontarollo, L.; et al. Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation. Basic Res. Cardiol. 2023, 118, 4.
- 41.
Kaludercic, N.; Carpi, A.; Menabò R.; et al. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim. Biophys. Acta. 2011, 1813, 1323–1332.
- 42.
Wright, C.D.; Chen, Q.; Baye, N.L.; et al. Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. Circ. Res. 2008, 103, 992–1000.
- 43.
Subramaniam, G.; Schleicher, K.; Kovanich, D.; et al. Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy. Circ. Res. 2023, 132, 828–848.
- 44.
Wolff, D.W.; Dang, H.K.; Liu, M.F.; et al. Distribution of alpha1-adrenergic receptor mRNA species in rat heart. J. Cardiovasc. Pharmacol. 1998, 32, 117–122.
- 45.
Brodde, O.E.; Bruck, H.; Leineweber, K.; et al. Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res. Cardiol. 2001, 96, 528–538.
- 46.
Ostadal, B.; Ostadal, P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br. J. Pharmacol. 2014, 171, 541–554.
- 47.
Ji, H.; Kwan, A.C.; Chen, M.T.; et al. Sex Differences in Myocardial and Vascular Aging. Circ. Res. 2022, 130, 566–577.
- 48.
Brogden, R.N.; Heel, R.C.; Speight, T.M.; et al. alpha-Methyl-p-tyrosine: a review of its pharmacology and clinical use. Drugs, 1981, 21, 81–89.
- 49.
Mandela, P.; Chandley, M.; Xu, Y.Y.; et al. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles. Neurochem. Int. 2010, 56, 760–767.
- 50.
Bourin, M.; Chue, P.; Guillon, Y. Paroxetine: a review. CNS Drug Rev. 2001, 7, 25–47.
- 51.
Guo, J.; Tang, R. Efficacy and tolerability of doxazosin gastro-intestinal therapeutic system versus tamsulosin in patients with lower urinary tract symptoms associated with benign prostatic hyperplasia: A systematic review and meta-analysis. Medicine (Baltimore) 2021, 100, e26955.
- 52.
Wang, Q.; Wang, Y.; West, T.M.; et al. Carvedilol induces biased β1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility. Cardiovasc. Res. 2021, 117, 2237–2251.
- 53.
Guillem, K.; Vouillac, C.; Azar, M.R.; et al. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J. Neurosci. 2005, 25, 8593–8600.
- 54.
Graf, W.D.; Unis, A.S.; Yates, C.M.; et al. Catecholamines in patients with 22q11.2 deletion syndrome and the low-activity COMT polymorphism. Neurology 2001, 57, 410–416.
- 55.
Jing, M.; Zhang, Y.; Wang, H.; et al. G-protein-coupled receptor-based sensors for imaging neurochemicals with high sensitivity and specificity. J. Neurochem. 2019, 151, 279–288.
- 56.
Wang, H.; Jing, M.; Li, Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr. Opin. Neurobiol. 2018, 50, 171–178.
- 57.
Nakanishi, J.; Takarada, T.; Yunoki, S.; et al. FRET-based monitoring of conformational change of the beta2 adrenergic receptor in living cells. Biochem. Biophys. Res. Commun. 2006, 343, 1191–1196.
- 58.
Feng, J.; Zhang, C.; Lischinsky, J.E.; et al. A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. Neuron 2019, 102, 745–761.
- 59.
Muller, A.; Joseph, V.; Slesinger, P.A.; et al. Cell-based reporters reveal in vivo dynamics of dopamine and norepinephrine release in murine cortex. Nat. Methods 2014, 11, 1245–1252.
- 60.
Surdo, N.C.; Berrera, M.; Koschinski, A.; et al. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat. Commun. 2017, 8, 15031.
- 61.
Inagaki, H.K.; Ben-Tabou de-Leon, S.; Wong, A.M.; et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 2012, 148, 583–595.
- 62.
Caldwell, J.L.; Lee, I.J.; Ngo, L.; et al. Whole-heart multiparametric optical imaging reveals sex-dependent heterogeneity in cAMP signaling and repolarization kinetics. Sci. Adv. 2023, 9, eadd5799.
- 63.
Fazal, L.; Azibani, F.; Vodovar, N.; et al. Effects of biological sex on the pathophysiology of the heart. Br. J. Pharmacol. 2014, 71, 555–566.
- 64.
Luczak, E.D.; Leinwand, L.A. Sex-based cardiac physiology. Annu. Rev. Physiol. 2009, 71, 1–18.
- 65.
Yue, Q.; Wang, K.; Guan, M.; et al. Single-Vesicle Electrochemistry Reveals Sex Difference in Vesicular Storage and Release of Catecholamine. Angew. Chem. Int. Ed. Engl. 2022, 61, e202117596.
- 66.
Mitoff, P.R.; Gam, D.; Ivanov, J.; et al. Cardiac-specific sympathetic activation in men and women with and without heart failure. Heart 2011, 97, 382–387.
- 67.
Cingolani, O.H.; Kaludercic, N.; Paolocci, N. Sexual dimorphism in cardiac norepinephrine spillover: A NET difference. Heart 2011, 97, 347–349.
- 68.
Grimsby, J.; Toth, M.; Chen, K.; et al. Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat. Genet. 1997, 17, 206–210.
- 69.
Jiang, H.; Xie, T.; Ramsden, D.B.; Ho, S.L. Human catechol-O-methyltransferase down-regulation by estradiol. Neuropharmacology 2003, 45, 1011–1018.