- 1.
Tennant, J.R. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 1964, 2, 685–694.
- 2.
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001, 21, A-3B.
- 3.
Hussein, R.A.; Mohsin A.J. Trypan blue exclusion assay verifies in vitro cytotoxicity of new cis-platinum (II) complex in human cells. Baghdad Sci. J. 2019, 16, 555–559.
- 4.
Rose, R.J.; Possingham J.V. The localization of (3H) thymidine incorporation in the DNA of replicating spinach chloroplasts by electron-microscope autoradiography. J. Cell Sci. 1976, 20, 341–355.
- 5.
Crane, A.M.; Bhattacharya S.K. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol. Biol. 2013, 1014, 65–70.
- 6.
Gratzner, H.G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 1982, 218, 474–475.
- 7.
Bergler, W.; Petroianu, G.; Schadel A. Feasibility of proliferation studies using the BrdU and MTT assays with a head and neck carcinoma cell line. ORL 1993, 55, 230–235.
- 8.
Lehmann, J.; Retz, M.; Sidhu, S.S.; et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol. 2006, 50, 141–147.
- 9.
Salic, A.; Mitchison T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. 2008, 105, 2415–2420.
- 10.
McGowan, E.M.; Alling, N.; Jackson, E.A.; et al. Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: Pitfalls of the MTS assay. PLoS ONE 2011, 6, e20623.
- 11.
Mead, T.J.; Lefebvre V. Proliferation assays (BrdU and EdU) on skeletal tissue sections. Methods Mol. Biol. 2014, 1130, 233–243.
- 12.
Balu, D.T.; Hodes, G.E.; Hill, T.E.; et al. Flow cytometric analysis of BrdU incorporation as a high-throughput method for measuring adult neurogenesis in the mouse. J. Pharmacol. Toxicol. Methods 2009, 59, 100–107.
- 13.
Lee, Y.S.; Yi, J.S.; Seo, S.J.; et al. Comparison of BALB/c and CBA/J mice for the local lymph node assay using bromodeoxyuridine with flow cytometry (LLNA: BrdU-FCM). Regul. Toxicol. Pharm. 2017, 83, 13–22.
- 14.
Zou, J.; Wu, K.; Lin, C.; et al. LINC00319 acts as a microRNA-335-5p sponge to accelerate tumor growth and metastasis in gastric cancer by upregulating ADCY3. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G10–G22.
- 15.
Staszkiewicz, J.; Gimble, J.; Cain, C.; et al. Flow cytometric and immunohistochemical detection of in vivo BrdU-labeled cells in mouse fat depots. Biochem. Biophys. Res. Commun. 2009, 378, 539–544.
- 16.
Berridge, M.V.; Herst, P.M.; Tan A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152.
- 17.
Marks, D.C.; Belov, L.; Davey, M.W.; et al. The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leukemia Res. 1992, 16, 1165–1173.
- 18.
Gomez Perez, M.; Fourcade, L.; Mateescu, M.A.; et al. Neutral Red versus MTT assay of cell viability in the presence of copper compounds. Anal. Biochem. 2017, 535, 43–46.
- 19.
Paull, K.D.; Shoemaker, R.H.; Boyd, M.R.; et al. The synthesis of XTT: A new tetrazolium reagent that is bioreducible to a water‐soluble formazan. Heterocycl. Chem. 1988, 25, 911–914.
- 20.
Roehm, N.W.; Rodgers, G.H.; Hatfield, S.M.; et al. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods 1991, 142, 257–265.
- 21.
Schröterová L.; Králová V.; Voráčová A.; et al. Antiproliferative effects of selenium compounds in colon cancer cells: Comparison of different cytotoxicity assays. Toxicol. Vitro 2009, 23, 1406–1411.
- 22.
Berridge, M.; Tan A. Trans-plasma membrane electron transport: A cellular assay for NADH-and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1. Protoplasma 1998, 205, 74–82.
- 23.
Weidmann, E.; Brieger, J.; Jahn, B.; et al. Lactate dehydrogenase-release assay: A reliable, nonradioactive technique for analysis of cytotoxic lymphocyte-mediated lytic activity against blasts from acute myelocytic leukemia. Ann. Hematol. 1995, 70, 153–158.
- 24.
Kumar, P.; Nagarajan, A.; Uchil P.D. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb. Protoc. 2018, 2018, pdb-prot095497.
- 25.
Drent, M.; Cobben, N.A.; Henderson, R.F.; et al. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur. Respir. J. 1996, 9, 1736–1742.
- 26.
Decker, T.; Lohmann-Matthes M.-L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 1988, 115, 61–69.
- 27.
Vives‐Bauza, C.; Yang, L.; Manfredi G. Assay of Mitochondrial ATP Synthesis in Animal Cells and Tissues. Methods Cell Biol. 2007, 80, 155–171.
- 28.
Tanaka, H.; Shinji, T.; Sawada, K.; et al. Development and application of a bioluminescence ATP assay method for rapid detection of coliform bacteria. Water Res. 997, 31, 1913–1918.
- 29.
Atkinson, D.E.; Atkinson D.E. Cellular Energy Metabolism and Its Regulations; Elsevier: Amsterdam, The Netherlands, 1977.
- 30.
Deininger, R.A.; Lee J. Rapid determination of bacteria in drinking water using an ATP assay. Field Anal. Chem. Technol. 2001, 5, 185–189.
- 31.
Long, J.A.; Guthrie H.D. Validation of a rapid, large-scale assay to quantify ATP concentration in spermatozoa. Theriogenology 2006, 65, 1620–1630.
- 32.
Taylor, A.L.; Kudlow, B.A.; Marrs, K.L.; et al. Bioluminescence detection of ATP release mechanisms in epithelia. Am. J. Physiol.-Cell Physiol. 1998, 275, C1391–C1406.
- 33.
Weston, S.A.; Parish C.R. New fluorescent dyes for lymphocyte migration studies: Analysis by flow cytometry and fluorescence microscopy. J. Immunol. Methods 1990, 133, 87–97.
- 34.
Lašt’ovička, J.; Budinský V.; Špíšek, R.; et al. Assessment of lymphocyte proliferation: CFSE kills dividing cells and modulates expression of activation markers. Cell. Immunol. 2009, 256, 79–85.
- 35.
Wang, X.M.; Terasaki, P.I.; Rankin G.W., Jr.; et al. A new microcellular cytotoxicity test based on calcein AM release. Human Immunol. 1993, 37, 264–270.
- 36.
Bratosin, D.; Mitrofan, L.; Palii, C.; et al. Novel fluorescence assay using calcein‐AM for the determination of human erythrocyte viability and aging. Cytom. Part A J. Int. Soc. Anal. Cytol. 2005, 66, 78–84.
- 37.
Stefanowicz-Hajduk, J.; Ochocka J.R. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol. Rep. 2020, 7, 335–344.
- 38.
Keogh, R.J. New technology for investigating trophoblast function. Placenta 2010, 31, 347–350.
- 39.
Ferrer, M.D.; Rodriguez, J.C.; Álvarez, L.; et al. Effect of antibiotics on biofilm inhibition and induction measured by real‐time cell analysis. J. Appl. Microbiol. 2017, 122, 640–650.
- 40.
Franken, N.A.; Rodermond, H.M.; Stap, J.; et al. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319.
- 41.
Plumb, J.A. Cell sensitivity assays: Clonogenic assay. In Cancer Cell Culture: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2004; pp. 159–164.
- 42.
Ross, A.A.; Cooper, B.W.; Lazarus, H.M.; et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 1993, 82, 2605–2610.
- 43.
Nicoletti, I.; Migliorati, G.; Pagliacci, M.C.; et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 1991, 139, 271–279.
- 44.
Chazotte, B. Labeling nuclear DNA with hoechst 33342. Cold Spring Harbor Protoc. 2011, 2011, pdb-prot5557.
- 45.
Barbosa, M.A.; Xavier, C.P.; Pereira, R.F.; et al. 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs. Cancers 2021, 14, 190.
- 46.
Mollaei, M.; Hassan, Z.M.; Khorshidi, F.; et al. Chemotherapeutic drugs: Cell death-and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl. Oncol. 2021, 14, 101056.
- 47.
Recasens, A.; Munoz L. Targeting cancer cell dormancy. Trends Pharmacol. Sci. 2019, 40, 128–141.
- 48.
Debnath, J.; Gammoh, N.; Ryan K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 2023, 24, 560–575.
- 49.
Wang, Y.; He Q.-Y.; Sun, R.W.Y.; et al. Gold (III) porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res. 2005, 65, 11553–11564.
- 50.
Priestley, P.; Baber, J.; Lolkema, M.P.; et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019, 575, 210–216.
- 51.
Salk, J.J.; Fox, E.J.; Loeb L.A. Mutational heterogeneity in human cancers: Origin and consequences. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 51–75.
- 52.
Hayes, T.K.; Aquilanti, E.; Persky, N.S.; et al. Comprehensive mutational scanning of EGFR reveals TKI sensitivities of extracellular domain mutants. Nat. Commun. 2024, 15, 2742.
- 53.
Yazlovitskaya, E.M.; DeHaan, R.D.; Persons D.L. Prolonged wild-type p53 protein accumulation and cisplatin resistance. Biochem. Biophys. Res. Commun. 2001, 283, 732–737.
- 54.
Vanhoefer, U.; Müller, M.R.; Hilger, R.A.; et al. Reversal of MDR1-associated resistance to topotecan by PAK-200S, a new dihydropyridine analogue, in human cancer cell lines. Br. J. Cancer 1999, 81, 1304–1310.
- 55.
Jaaks, P.; Coker, E.A.; Vis, D.J.; et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022, 603, 166–173.
- 56.
Tyner, J.W.; Haderk, F.; Kumaraswamy, A.; et al. Understanding drug sensitivity and tackling resistance in cancer. Cancer Res. 2022, 82, 1448–1460.
- 57.
Workman, P. The NCI-60 Human Tumor Cell Line Screen: A Catalyst for Progressive Evolution of Models for Discovery and Development of Cancer Drugs. Cancer Res. 2023, 83, 3170–3173.
- 58.
Gerdes, H.; Casado, P.; Dokal, A.; et al. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat. Commun. 2021, 12, 1850.
- 59.
Levatić J.; Salvadores, M.; Fuster-Tormo, F.; et al. Mutational signatures are markers of drug sensitivity of cancer cells. Nat. Commun. 2022, 13, 2926.