2504000418
  • Open Access
  • Review
Metabolomics in Cardiovascular Diseases
  • Shan Lu 1, †,   
  • Zisheng Huang 2, †,   
  • Baitao Liu 3,   
  • Yan Zhang 1, *

Received: 10 Jul 2023 | Revised: 25 Sep 2024 | Accepted: 26 Sep 2024 | Published: 25 Oct 2024

Abstract

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and disorders of cardiac energy metabolism are the main contributors to many cardiovascular pathologies. Metabolomics is a science that examines the types and amounts of metabolites and the patterns of change in biological systems after stimulation or perturbation. Metabolites are widely distributed in the body and have universal regulatory effects on a wide range of physiological activities. Metabolism is at the end of the regulation of life activities, so metabolomics is closer to phenotypes than genomics and transcriptom-ics, and can reflect the state of biological systems more accurately. Metabolomics, a cross-cutting dis-cipline emerging in the post-genomics era, has rapidly penetrated into many fields of medicine, im-proves understanding of complex diseases and generates more new discoveries and hypotheses. Therefore, metabolomics helps detect metabolic changes in the course of CVDs, search for biomarkers, and further study the pathogenesis of CVDs. In this review, we intend to comprehensively summarize the principles, classification and applications in CVDs of metabolomics.

References 

  • 1.
    Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532.
  • 2.
    Roth, G.A.; Mensah, G.A.; Johnson, C.O.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021.
  • 3.
    Ventura, H.O.; Elagizi, A.; Lavie, C.J. Optimal Prevention of Cardiovascular Diseases: The Earlier the Better. J. Am. Coll. Cardiol. 2023, 81, 1162–1164.
  • 4.
    Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; et al. Atherosclerosis: Process, indicators, risk factors and new hopes. Int. J. Prev. Med. 2014, 5, 927–946.
  • 5.
    Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac metabolism in heart failure: Implications beyond ATP production. Circ. Res. 2013, 113, 709–724.
  • 6.
    Tang, W.H.W.; Li, D.Y.; Hazen, S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 2019, 16, 137–154.
  • 7.
    Riehle, C.; Abel, E.D. Insulin Signaling and Heart Failure. Circ Res 2016, 118, 1151–1169.
  • 8.
    McGarrah, R.W.; Crown, S.B.; Zhang, G.F.; et al. Cardiovascular Metabolomics. Circ. Res. 2018, 122, 1238–1258.
  • 9.
    Ussher, J.R.; Elmariah, S.; Gerszten, R.E.; et al. The Emerging Role of Metabolomics in the Diagnosis and Prognosis of Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 68, 2850–2870.
  • 10.
    Nicholson, J.K.; Connelly, J.; Lindon, J.C.; et al. Metabonomics: A platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 2002, 1, 153–161.
  • 11.
    Jang, C.; Chen, L.; Rabinowitz, J.D. Metabolomics and Isotope Tracing. Cell 2018, 173, 822–837.
  • 12.
    Sperber, H.; Mathieu, J.; Wang, Y.; et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 2015, 17, 1523–1535.
  • 13.
    Yanes, O.; Clark, J.; Wong, D.M.; et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 2010, 6, 411–417.
  • 14.
    Li, X.; Gianoulis, T.A.; Yip, K.Y.; et al. Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell 2010, 143, 639–650.
  • 15.
    Hubbard, T.D.; Murray, I.A.; Bisson, W.H.; et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 2015, 5, 12689.
  • 16.
    Sharma, M.; Astekar, M.; Soi, S.; et al. pH Gradient Reversal: An Emerging Hallmark of Cancers. Recent Pat. Anti-Cancer Drug Discov. 2015, 10, 244–258.
  • 17.
    Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459.
  • 18.
    Wang, J.; Wang, C.; Liu, H.; et al. Metabolomics assisted metabolic network modeling and network wide analysis of metabolites in microbiology. Crit. Rev. Biotechnol. 2018, 38, 1106–1120.
  • 19.
    Ye, C.; Wei, X.; Shi, T.; et al. Genome-scale metabolic network models: From first-generation to next-generation. Appl. Microbiol. Biotechnol. 2022, 106, 4907–4920.
  • 20.
    Mi, K.; Jiang, Y.; Chen, J.; et al. Construction and Analysis of Human Diseases and Metabolites Network. Front. Bioeng. Biotechnol. 2020, 8, 398.
  • 21.
    Rinschen, M.M.; Ivanisevic, J.; Giera, M.; et al. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367.
  • 22.
    Bauermeister, A.; Mannochio-Russo, H.; Costa-Lotufo, L.V.; et al. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 2022, 20, 143–160.
  • 23.
    Mandal, R.; Chamot, D.; Wishart, D.S. The role of the Human Metabolome Database in inborn errors of metabolism. J. Inherit. Metab. Dis. 2018, 41, 329–336.
  • 24.
    Muthubharathi, B.C.; Gowripriya, T.; Balamurugan, K. Metabolomics: Small molecules that matter more. Mol. Omics 2021, 17, 210–229.
  • 25.
    Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; et al. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120.
  • 26.
    Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; et al. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320.
  • 27.
    Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269.
  • 28.
    Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; et al. Untargeted Metabolomics Strategies-Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905.
  • 29.
    Caldwell, G.W.; Leo, G.C. Can Untargeted Metabolomics Be Utilized in Drug Discovery/Development? Curr. Top. Med. Chem. 2017, 17, 2716–2739.
  • 30.
    Crook, A.A.; Powers, R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020, 25, 5128.
  • 31.
    Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 2018, 37, 772–792.
  • 32.
    Griffiths, W.J.; Koal, T.; Wang, Y.; et al. Targeted metabolomics for biomarker discovery. Angew. Chem. 2010, 49, 5426–5445.
  • 33.
    Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; et al. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30.2.1–30.2.24.
  • 34.
    Amer, B.; Baidoo, E.E.K. Omics-Driven Biotechnology for Industrial Applications. Front. Bioeng. Biotechnol. 2021, 9, 613307.
  • 35.
    Chen, L.; Zhong, F.; Zhu, J. Bridging Targeted and Untargeted Mass Spectrometry-Based Metabolomics via Hybrid Approaches. Metabolites 2020, 10, 348.
  • 36.
    Cui, H.; Chen, Y.; Li, K.; et al. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur. Heart J. 2021, 42, 4373–4385.
  • 37.
    Kordalewska, M.; Markuszewski, M.J. Metabolomics in cardiovascular diseases. J. Pharm. Biomed. Anal. 2015, 113, 121–136.
  • 38.
    Zhou, B.; Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Investig. 2018, 128, 3716–3726.
  • 39.
    McMurray, J.J.; Pfeffer, M.A. Heart failure. Lancet 2005, 365, 1877–1889.
  • 40.
    van Bilsen, M.; Smeets, P.J.; Gilde, A.J.; et al. Metabolic remodelling of the failing heart: The cardiac burn-out syndrome? Cardiovasc. Res. 2004, 61, 218–226.
  • 41.
    Kang, S.M.; Park, J.C.; Shin, M.J.; et al. ¹H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. Clin. Biochem. 2011, 44, 293–299.
  • 42.
    De Souza, A.I.; Cardin, S.; Wait, R.; et al. Proteomic and metabolomic analysis of atrial profibrillatory remodelling in congestive heart failure. J. Mol. Cell Cardiol. 2010, 49, 851–863.
  • 43.
    Baman, J.R.; Ahmad, F.S. Heart Failure. Jama 2020, 324, 1015.
  • 44.
    Zheng, Y.; Yu, B.; Alexander, D.; et al. Associations between metabolomic compounds and incident heart failure among African Americans: The ARIC Study. Am. J. Epidemiol. 2013, 178, 534–542.
  • 45.
    Chan, C.X.; Khan, A.A.; Choi, J.H.; et al. Technology platform development for targeted plasma metabolites in human heart failure. Clin. Proteom. 2013, 10, 7.
  • 46.
    Steffens, D.C.; Wei, J.; Krishnan, K.R.; et al. Metabolomic differences in heart failure patients with and without major depression. J. Geriatr. Psychiatry Neurol. 2010, 23, 138–146.
  • 47.
    Bodi, V.; Marrachelli, V.G.; Husser, O.; et al. Metabolomics in the diagnosis of acute myocardial ischemia. J. Cardiovasc. Transl. Res. 2013, 6, 808–815.
  • 48.
    Hasselbalch, R.B.; Kristensen, J.H.; Strandkjær, N.; et al. Metabolomics of early myocardial ischemia. Metabolomics Off. J. Metabolomic Soc. 2023, 19, 33.
  • 49.
    Bax, J.J.; Di Carli, M.; Narula, J.; et al. Multimodality imaging in ischaemic heart failure. Lancet 2019, 393, 1056–1070.
  • 50.
    Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210.
  • 51.
    Zhang, X.J.; Liu, X.; Hu, M.; et al. Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metab. 2021, 33, 2059–2075.e2010.
  • 52.
    Del Re, D.P.; Amgalan, D.; Linkermann, A.; et al. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019, 99, 1765–1817.
  • 53.
    Angeli, J.P.F.; Shah, R.; Pratt, D.A.; et al. Ferroptosis Inhibition: Mechanisms and Opportunities. Trends Pharmacol. Sci. 2017, 38, 489–498.
  • 54.
    Cai, W.; Liu, L.; Shi, X.; et al. Alox15/15-HpETE Aggravates Myocardial Ischemia-Reperfusion Injury by Promoting Cardiomyocyte Ferroptosis. Circulation 2023, 147, 1444–1460.
  • 55.
    Kobiyama, K.; Ley, K. Atherosclerosis. Circ. Res. 2018, 123, 1118–1120.
  • 56.
    Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533.
  • 57.
    Vallejo, M.; García, A.; Tuñón, J.; et al. Plasma fingerprinting with GC-MS in acute coronary syndrome. Anal. Bioanal. Chem. 2009, 394, 1517–1524.
  • 58.
    Wang, Z.; Klipfell, E.; Bennett, B.J.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63.
  • 59.
    Wang, Z.; Roberts, A.B.; Buffa, J.A.; et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 2015, 163, 1585–1595.
  • 60.
    Cheng, K.K.; Benson, G.M.; Grimsditch, D.C.; et al. Metabolomic study of the LDL receptor null mouse fed a high-fat diet reveals profound perturbations in choline metabolism that are shared with ApoE null mice. Physiol. Genom. 2010, 41, 224–231.
  • 61.
    Xue, S.S.; He, J.L.; Zhang, X.; et al. Metabolomic analysis revealed the role of DNA methylation in the balance of arachidonic acid metabolism and endothelial activation. Biochim. et Biophys. Acta 2015, 1851, 1317–1326.
  • 62.
    Bao, Q.K.; Zhang, X.; Zhu, Y. [Research progress of eicosanoid metabolomics in cardiovascular diseases]. Sheng Li Xue Bao Acta Physiol. Sin. 2021, 73, 606–616.
  • 63.
    Wang, S.W.; Huang, Y.B.; Huang, J.W.; et al. Epidemiology, Clinical Features, and Prescribing Patterns of Aortic Aneurysm in Asian Population from 2005 to 2011. Medicine 2015, 94, e1716.
  • 64.
    Erbel, R.; Aboyans, V.; Boileau, C.; et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2873–2926.
  • 65.
    Poulter, N. Coronary heart disease is a multifactorial disease. Am. J. Hypertens. 1999, 12, 92s–95s.
  • 66.
    Talmor-Barkan, Y.; Bar, N.; Shaul, A.A.; et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat. Med. 2022, 28, 295–302.
  • 67.
    Gelfand, J.M.; Neimann, A.L.; Shin, D.B.; et al. Risk of myocardial infarction in patients with psoriasis. JAMA 2006, 296, 1735–1741.
  • 68.
    Armstrong, E.J.; Harskamp, C.T.; Armstrong, A.W. Psoriasis and major adverse cardiovascular events: A systematic review and meta-analysis of observational studies. J. Am. Heart Assoc. 2013, 2, e000062.
  • 69.
    Manolis, A.A.; Manolis, T.A.; Melita, H.; et al. Psoriasis and cardiovascular disease: The elusive link. Int. Rev. Immunol. 2019, 38, 33–54.
  • 70.
    Colaco, K.; Lee, K.A.; Akhtari, S.; et al. Targeted metabolomic profiling and prediction of cardiovascular events: A prospective study of patients with psoriatic arthritis and psoriasis. Ann. Rheum. Dis. 2021, 80, 1429–1435.
Share this article:
How to Cite
Lu, S.; Huang, Z.; Liu, B.; Zhang, Y. Metabolomics in Cardiovascular Diseases. International Journal of Drug Discovery and Pharmacology 2024, 3 (4), 100019. https://doi.org/10.53941/ijddp.2024.100019.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.