- 1.
Khan, F.; Tritschler, T.; Kahn, S.R.; et al. Venous thromboembolism. Lancet 2021, 398, 64–77. https://doi.org/10.1016/S0140-6736(20)32658-1.
- 2.
Lutsey, P.L.; Zakai, N.A. Epidemiology and prevention of venous thromboembolism. Nat. Rev. Cardiol. 2023, 20, 248–262. https://doi.org/10.1038/s41569-022-00787-6.
- 3.
Fredenburgh, J.C.; Weitz, J.I. New anticoagulants: Moving beyond the direct oral anticoagulants. J. Thromb. Haemost. 2021, 19, 20–29. https://doi.org/10.1111/jth.15126.
- 4.
Kruger, P.C.; Eikelboom, J.W.; Douketis, J.D.; et al. Deep vein thrombosis: Update on diagnosis and management. Med. J. Aust. 2019, 210, 516–524. https://doi.org/10.5694/mja2.50201.
- 5.
Tritschler, T.; Kraaijpoel, N.; Le Gal, G.; et al. Venous Thromboembolism: Advances in Diagnosis and Treatment. JAMA 2018, 320, 1583–1594. https://doi.org/10.1001/jama.2018.14346.
- 6.
Di Nisio, M.; Van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. https://doi.org/10.1016/S0140-6736(16)30514-1.
- 7.
Cohen, T.; Haas, T.; Cushing, M.M. The strengths and weaknesses of viscoelastic testing compared to traditional coagulation testing. Transfusion 2020, 60, S6. https://doi.org/10.1111/trf.16073.
- 8.
Mao, C.; Xiong, Y.; Fan, C. Comparison between thromboelastography and conventional coagulation assays in patients with deep vein thrombosis. Clin. Chim. Acta 2021, 520, 208–213. https://doi.org/10.1016/j.cca.2021.06.019.
- 9.
Holcomb, J.B.; Minei, K.M.; Scerbo, M.L.; et al. Admission Rapid Thrombelastography Can Replace Conventional Coagulation Tests in the Emergency Department: Experience With 1974 Consecutive Trauma Patients. Ann. Surg. 2012, 256, 476–486. https://doi.org/10.1097/SLA.0b013e3182658180.
- 10.
Hartert, H. Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren. Klin. Wochenschr. 1948, 26, 577–583. https://doi.org/10.1007/BF01697545.
- 11.
Redfern, R.E.; Fleming, K.; March, R.L.; et al. Thromboelastography-Directed Transfusion in Cardiac Surgery: Impact on Postoperative Outcomes. Ann. Thorac. Surg. 2019, 107, 1313–1318. https://doi.org/10.1016/j.athoracsur.2019.01.018.
- 12.
Pietri, L.D.; Montalti, R.; Bolondi, G.; et al. Intraoperative thromboelastography as a tool to predict postoperative thrombosis during liver transplantation. World J. Transplant. 2020, 10, 345–355. https://doi.org/10.5500/wjt.v10.i11.345.
- 13.
Subramanian, M.; Kaplan, L.J.; Cannon, J.W. Thromboelastography-Guided Resuscitation of the Trauma Patient. JAMA Surg. 2019, 154, 1152. https://doi.org/10.1001/jamasurg.2019.3136.
- 14.
Muzaffar, S.N.; Azim, A.; Siddiqui, S.S. Thromboelastography for Predicting Disseminated Intravascular Coagulation (DIC) in Sepsis. Shock 2022, 57, 759. https://doi.org/10.1097/SHK.0000000000001929.
- 15.
Ramiz, S.; Hartmann, J.; Young, G.; et al. Clinical utility of viscoelastic testing (TEG and ROTEM analyzers) in the management of old and new therapies for hemophilia. Am. J. Hematol. 2019, 94, 249–256. https://doi.org/10.1002/ajh.25319.
- 16.
Karon, B.S. Why is everyone so excited about thromboelastrography (TEG)? Clin. Chim. Acta 2014, 436, 143–148. https://doi.org/10.1016/j.cca.2014.05.013.
- 17.
Carroll, R.C.; Craft, R.M.; Langdon, R.J.; et al. Early evaluation of acute traumatic coagulopathy by thrombelastography. Transl. Res. 2009, 154, 34–39. https://doi.org/10.1016/j.trsl.2009.04.001.
- 18.
Voleisis, A.; Kazys, R.; Voleisiene, B.; et al. Ultrasonic method for monitoring the clotting process during whole blood coagulation. Ultrasonics 2017, 78, 146–151. https://doi.org/10.1016/j.ultras.2017.02.017.
- 19.
Biggs, R.; Macmillan, R.L. The Errors of Some Haematological Methods as They Are Used in a Routine Laboratory. J. Clin. Pathol. 1948, 1, 269–287. https://doi.org/10.1136/jcp.1.5.269.
- 20.
Heran, C.; Morgan, S.; Kasiewski, C.; et al. Antithrombotic efficacy of RPR208566, a novel factor Xa inhibitor, in a rat model of carotid artery thrombosis. Eur. J. Pharmacol. 2000, 389, 201–207. https://doi.org/10.1016/S0014-2999(99)00902-4.
- 21.
Perzborn, E.; Strassburger, J.; Wilmen, A.; et al. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939—An oral, direct Factor Xa inhibitor. J. Thromb. Haemost. 2005, 3, 514–521. https://doi.org/10.1111/j.1538-7836.2005.01166.x.
- 22.
Brill, J.B.; Badiee, J.; Zander, A.L.; et al. The rate of deep vein thrombosis doubles in trauma patients with hypercoagulable thromboelastography. J. Trauma. Acute Care Surg. 2017, 83, 413–419. https://doi.org/10.1097/TA.0000000000001618.
- 23.
Conversy, B.; Blais, M.C.; Dunn, M.; et al. Anticoagulant activity of oral rivaroxaban in healthy dogs. Vet. J. 2017, 223, 5–11. https://doi.org/10.1016/j.tvjl.2017.03.006.
- 24.
Evans, L.A.; Tansey, C.; Wiebe, M.; et al. A prospective evaluation of rivaroxaban on haemostatic parameters in apparently healthy dogs. Vet. Med. Sci. 2019, 5, 317–324. https://doi.org/10.1002/vms3.161.
- 25.
Gentry, P.A. Comparative aspects of blood coagulation. Vet. J. Lond. Engl. 1997. 2004, 168, 238–251. https://doi.org/10.1016/j.tvjl.2003.09.013.
- 26.
Lechner, R.; Helm, M.; Müller, M.; et al. In-vitro study of species-specific coagulation differences in animals and humans using rotational thromboelastometry (ROTEM). BMJ Mil. Health 2019, 165, 356–359. https://doi.org/10.1136/jramc-2018-001092.
- 27.
Stettler, G.R.; Moore, E.E.; Moore, H.B.; et al. Thrombelastography indicates limitations of animal models of trauma-induced coagulopathy. J. Surg. Res. 2017, 217, 207–212. https://doi.org/10.1016/j.jss.2017.05.027.
- 28.
Wohlauer, M.V.; Moore, E.E.; Harr, J.; et al. A Standardized technique for performing thromboelastography in rodents. Shock 2011, 36, 524–526. https://doi.org/10.1097/SHK.0b013e31822dc518.
- 29.
Herrmann, R.; Thom, J.; Wood, A.; et al. Thrombin generation using the calibrated automated thrombinoscope to assess reversibility of dabigatran and rivaroxaban. Thromb. Haemost. 2014, 112, 989–995. https://doi.org/10.1160/TH13-07-0607.
- 30.
Dias, J.D.; Norem, K.; Doorneweerd, D.D.; et al. Use of Thromboelastography (TEG) for detection of new oral anticoagulants. Arch. Pathol. Lab. Med. 2015, 139, 665–673. https://doi.org/10.5858/arpa.2014-0170-OA.
- 31.
Giani, M.; Russotto, V.; Pozzi, M.; et al. Thromboelastometry, thromboelastography, and conventional tests to assess anticoagulation during extracorporeal support: A Prospective Observational Study. ASAIO J. 2021, 67, 196–200. https://doi.org/10.1097/MAT.0000000000001196.
- 32.
Kakkos, S.K.; Gohel, M.; Baekgaard, N.; et al. Editor’s Choice–European Society for Vascular Surgery (ESVS) 2021 Clinical practice guidelines on the management of venous thrombosis. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 9–82. https://doi.org/10.1016/j.ejvs.2020.09.023.
- 33.
Hull, R.D.; Raskob, G.E.; Hirsh, J.; et al. Continuous intravenous heparin compared with intermittent subcutaneous heparin in the initial treatment of proximal-vein thrombosis. N. Engl. J. Med. 1986, 315, 1109–1114. https://doi.org/10.1056/NEJM198610303151801.
- 34.
Wannamethee, S.G.; Papacosta, O.; Lennon, L.; et al. Haematological variables and risk of future venous thromboembolism in the British Regional Heart Study on men. Combined D-dimer and APTT as a predictive test for thromboembolism? Br. J. Haematol. 2022, 198, 587–594. https://doi.org/10.1111/bjh.18288.
- 35.
Lippi, G.; Favaloro, E.J. Laboratory monitoring of warfarin in the era of direct oral anticoagulants. Lancet Haematol. 2015, 2, e223–e224. https://doi.org/10.1016/S2352-3026(15)00075-7.
- 36.
Chan, N.; Sobieraj-Teague, M.; Eikelboom, J.W. Direct oral anticoagulants: Evidence and unresolved issues. Lancet Lond. Engl. 2020, 396, 1767–1776. https://doi.org/10.1016/S0140-6736(20)32439-9.
- 37.
Perzborn, E.; Roehrig, S.; Straub, A.; et al. Rivaroxaban: A new oral factor Xa inhibitor. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 376–381. https://doi.org/10.1161/ATVBAHA.110.202978.
- 38.
Zhou, W.; Abdurahman, A.; Umar, A.; et al. Effects of cydonia oblonga miller extracts on blood hemostasis, coagulation and fibrinolysis in mice, and experimental thrombosis in rats. J. Ethnopharmacol. 2014, 154, 163–169. https://doi.org/10.1016/j.jep.2014.03.056.
- 39.
Doering, C.J.; Wagg, C.R.; Caulkett, N.A.; et al. Comparison of arterial and venous whole blood clot initiation, formation, and strength by thromboelastography in anesthetized swine. Blood Coagul. Fibrinolysis. 2014, 25, 20–24. https://doi.org/10.1097/MBC.0b013e328364672a.
- 40.
Groves, D.S.; Winegar, D.A.; Fernandez, L.G.; et al. Comparison of coagulation parameters in arterial and venous blood in cardiac surgery measured using the quantra system. J. Cardiothorac. Vasc. Anesth. 2019, 33, 976–984. https://doi.org/10.1053/j.jvca.2018.08.201.
- 41.
Schuurman, P.R.; Albrecht, K.W. Intraoperative changes of transcranial Doppler velocity: Relation to arterial oxygen content and whole-blood viscosity. Ultrasound Med. Biol. 1999, 25, 151–154. https://doi.org/10.1016/S0301-5629(98)00135-5.