- 1.
Gollob, M.H. Short QT syndrome: Advancing our understanding of genetics and cardiac physiology. Heart Rhythm 2023, 20, 1144–1145. https://doi.org/10.1016/j.hrthm.2023.05.003.
- 2.
Gussak, I.; Brugada, P.; Brugada, J.; et al. Idiopathic short QT interval: A new clinical syndrome? Cardiology 2000, 94, 99–102. https://doi.org/10.1159/000047299.
- 3.
Mazzanti, A.; Kanthan, A.; Monteforte, N.; et al. Novel insight into the natural history of short QT syndrome. J. Am. Coll. Cardiol. 2014, 63, 1300–1308. https://doi.org/10.1016/j.jacc.2013.09.078.
- 4.
Al-Khatib, S.M.; Stevenson, W.G. Management of Ventricular Arrhythmias and Sudden Cardiac Death Risk Associated with Cardiac Channelopathies. JAMA Cardiol. 2018, 3, 775–776. https://doi.org/10.1001/jamacardio.2018.1116.
- 5.
Bjerregaard, P. Diagnosis and management of short QT syndrome. Heart Rhythm 2018, 15, 1261–1267. https://doi.org/10.1016/j.hrthm.2018.02.034.
- 6.
Lester, R.M.; Paglialunga, S.; Johnson, I.A. QT Assessment in Early Drug Development: The Long and the Short of It. Int. J. Mol. Sci. 2019, 20, 1324. https://doi.org/10.3390/ijms20061324.
- 7.
Providencia, R.; Karim, N.; Srinivasan, N.; et al. Impact of QTc formulae in the prevalence of short corrected QT interval and impact on probability and diagnosis of short QT syndrome. Heart 2018, 104, 502–508. https://doi.org/10.1136/heartjnl-2017-311673.
- 8.
Tülümen, E.; Giustetto, C.; Wolpert, C.; et al. PQ segment depression in patients with short QT syndrome: A novel marker for diagnosing short QT syndrome? Heart Rhythm 2014, 11, 1024–1030. https://doi.org/10.1016/j.hrthm.2014.02.024.
- 9.
Shiti, A.; Arbil, G.; Shaheen, N.; et al. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J. Mol. Cell. Cardiol. 2023, 183, 42–53. https://doi.org/10.1016/j.yjmcc.2023.08.003.
- 10.
Suzuki, H.; Horie, M.; Ozawa, J.; et al. Novel electrocardiographic criteria for short QT syndrome in children and adolescents. Europace 2021, 23, 2029–2038. https://doi.org/10.1093/europace/euab097.
- 11.
Sedlak, T.; Shufelt, C.; Iribarren, C.; et al. Sex hormones and the QT interval: A review. J. Womens Health 2012, 21, 933–941. https://doi.org/10.1089/jwh.2011.3444.
- 12.
Giustetto, C.; Schimpf, R.; Mazzanti, A.; et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol 2011, 58, 587–595. https://doi.org/10.1016/j.jacc.2011.03.038.
- 13.
Odening, K.E.; Bodi, I.; Rieke, R.; et al. Electro-mechanical remodeling in transgenig short QT syndrome rabbits. Heart Rhythm 2017, 14, S327.
- 14.
El-Battrawy, I.; Besler, J.; Liebe, V.; et al. Long-Term Follow-Up of Patients With Short QT Syndrome: Clinical Profile and Outcome. J Am. Heart Assoc. 2018, 7, e010073. https://doi.org/10.1161/jaha.118.010073.
- 15.
Priori, S.G.; Blomstrom-Lundqvist, C.; Mazzanti, A.; et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2015, 36, 2793–2867. https://doi.org/10.1093/eurheartj/ehv316.
- 16.
Mazzanti, A.; Maragna, R.; Vacanti, G.; et al. Hydroquinidine Prevents Life-Threatening Arrhythmic Events in Patients With Short QT Syndrome. J. Am. Coll. Cardiol. 2017, 70, 3010–3015. https://doi.org/10.1016/j.jacc.2017.10.025.
- 17.
Walsh, R.; Adler, A.; Amin, A.S.; et al. Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death. Eur. Heart J. 2022, 43, 1500–1510. https://doi.org/10.1093/eurheartj/ehab687.
- 18.
Brugada, R.; Hong, K.; Dumaine, R.; et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 2004, 109, 30–35. https://doi.org/10.1161/01.Cir.0000109482.92774.3a.
- 19.
Campuzano, O.; Sarquella-Brugada, G.; Cesar, S.; et al. Recent Advances in Short QT Syndrome. Front. Cardiovasc. Med. 2018, 5, 149. https://doi.org/10.3389/fcvm.2018.00149.
- 20.
Itoh, H.; Sakaguchi, T.; Ashihara, T.; et al. A novel KCNH2 mutation as a modifier for short QT interval. Int. J. Cardiol. 2009, 137, 83–85. https://doi.org/10.1016/j.ijcard.2008.05.050.
- 21.
Redpath, C.J.; Green, M.S.; Birnie, D.H.; et al. Rapid genetic testing facilitating the diagnosis of short QT syndrome. Can. J. Cardiol. 2009, 25, e133–e135.
- 22.
Hu, D.; Li, Y.; Zhang, J.; et al. The Phenotypic Spectrum of a Mutation Hotspot Responsible for the Short QT Syndrome. JACC Clin. Electrophysiol. 2017, 3, 727–743. https://doi.org/10.1016/j.jacep.2016.11.013.
- 23.
Sun, Y.; Quan, X.Q.; Fromme, S.; et al. A novel mutation in the KCNH2 gene associated with short QT syndrome. J. Mol. Cell. Cardiol. 2011, 50, 433–441. https://doi.org/10.1016/j.yjmcc.2010.11.017.
- 24.
Harrell, D.T.; Ashihara, T.; Ishikawa, T.; et al. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int. J. Cardiol. 2015, 190, 393–402. https://doi.org/10.1016/j.ijcard.2015.04.090.
- 25.
Akdis, D.; Saguner, A.M.; Medeiros-Domingo, A.; et al. Multiple clinical profiles of families with the short QT syndrome. Europace 2018, 20, f113-f121. https://doi.org/10.1093/europace/eux186.
- 26.
Bellocq, C.; van Ginneken, A.C.; Bezzina, C.R.; et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 2004, 109, 2394–2397. https://doi.org/10.1161/01.CIR.0000130409.72142.FE.
- 27.
Tamargo, J.; Caballero, R.; Gomez, R.; et al. Pharmacology of cardiac potassium channels. Cardiovasc. Res. 2004, 62, 9–33. https://doi.org/10.1016/j.cardiores.2003.12.026.
- 28.
Hong, K.; Piper, D.R.; Diaz-Valdecantos, A.; et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc. Res. 2005, 68, 433–440. https://doi.org/10.1016/j.cardiores.2005.06.023.
- 29.
Garcia Ordonez, G.; Reyes-Quintero, A.E.; Garcia, A.; et al. KCNQ1 V141M and Short QT Syndrome: Are we dealing with a different entity? Eur. Heart J. 2020, 41, 453. https://doi.org/10.1093/ehjci/ehaa946.0453.
- 30.
Wu, Z.J.; Huang, Y.; Fu, Y.C.; et al. Characterization of a Chinese KCNQ1 mutation (R259H) that shortens repolarization and causes short QT syndrome 2. J. Geriatr. Cardiol. 2015, 12, 394–401. https://doi.org/10.11909/j.issn.1671-5411.2015.04.002.
- 31.
Moreno, C.; Oliveras, A.; de la Cruz, A.; et al. A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovasc. Res. 2015, 107, 613–623. https://doi.org/10.1093/cvr/cvv196.
- 32.
Rothenberg, I.; Piccini, I.; Wrobel, E.; et al. Structural interplay of KCNE1 and KV7.1 is crucial for both, SQT2 and LQT1. Acta Physiol. 2015, 213, 116. https://doi.org/10.1111/apha.12484.
- 33.
Hancox, J.C.; Whittaker, D.G.; Du, C.; et al. Emerging therapeutic targets in the short QT syndrome. Expert Opin. Ther. Targets 2018, 22, 439–451. https://doi.org/10.1080/14728222.2018.1470621.
- 34.
van der Schoor, L.; van Hattum, E.J.; de Wilde, S.M.; et al. Towards the development of agokirs: New pharmacological activators to study kir 2.x channel and target cardiac disease. Int. J. Mol. Sci. 2020, 21, 5746. https://doi.org/10.3390/ijms21165746.
- 35.
Priori, S.G.; Pandit, S.V.; Rivolta, I.; et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 2005, 96, 800–807. https://doi.org/10.1161/01.RES.0000162101.76263.8c.
- 36.
Du, C.Y.; Rasmusson, R.L.; Bett, G.C.; et al. Investigation of the Effects of the Short QT Syndrome D172N Kir2.1 Mutation on Ventricular Action Potential Profile Using Dynamic Clamp. Front. Pharmacol. 2022, 12, 794620. https://doi.org/10.3389/fphar.2021.794620.
- 37.
Hattori, T.; Makiyama, T.; Akao, M.; et al. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents. Cardiovasc. Res. 2012, 93, 666–673. https://doi.org/10.1093/cvr/cvr329.
- 38.
Nagueh, S.F.; Zoghbi, W.A. Role of Imaging in the Evaluation of Patients at Risk for Sudden Cardiac Death: Genotype–Phenotype Intersection. JACC Cardiovasc. Imaging 2015, 8, 828–845. https://doi.org/10.1016/j.jcmg.2015.04.006.
- 39.
Ambrosini, E.; Sicca, F.; Brignone, M.S.; et al. Genetically induced dysfunctions of Kir2.1 channels: Implications for short QT3 syndrome and autism-epilepsy phenotype. Hum. Mol. Genet. 2014, 23, 4875–4886. https://doi.org/10.1093/hmg/ddu201.
- 40.
Hancox, J.C.; Du, C.Y.; Butler, A.; et al. Pro-arrhythmic effects of gain-of-function potassium channel mutations in the short QT syndrome. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2023, 378, 20220165. https://doi.org/10.1098/rstb.2022.0165.
- 41.
Antzelevitch, C.; Pollevick, G.D.; Cordeiro, J.M.; et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 2007, 115, 442–449. https://doi.org/10.1161/CIRCULATIONAHA.106.668392.
- 42.
Endres, D.; Decher, N.; Röhr, I.; et al. New Cav1.2 Channelopathy with High-Functioning Autism, Affective Disorder, Severe Dental Enamel Defects, a Short QT Interval, and a Novel CACNA1C Loss-Of-Function Mutation. Int. J. Mol. Sci. 2020, 21, 8611. https://doi.org/10.3390/ijms21228611.
- 43.
Zhong, R.; Zhang, F.; Yang, Z.; et al. Epigenetic mechanism of L-type calcium channel beta-subunit downregulation in short QT human induced pluripotent stem cell-derived cardiomyocytes with CACNB2 mutation. Europace 2022, 24, 2028–2036. https://doi.org/10.1093/europace/euac091.
- 44.
Templin, C.; Ghadri, J.R.; Rougier, J.S.; et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur. Heart J. 2011, 32, 1077–1088. https://doi.org/10.1093/eurheartj/ehr076.
- 45.
Ackerman, M.J.; Splawski, I.; Makielski, J.C.; et al. Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: Implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm 2004, 1, 600–607. https://doi.org/10.1016/j.hrthm.2004.07.013.
- 46.
Hong, K.; Hu, J.; Yu, J.; et al. Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation. Eur J. Hum. Genet. 2012, 20, 1189–1192. https://doi.org/10.1038/ejhg.2012.63.
- 47.
Tan, B.H.; Valdivia, C.R.; Rok, B.A.; et al. Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants. Heart Rhythm 2005, 2, 741–747. https://doi.org/10.1016/j.hrthm.2005.04.021.
- 48.
Gollob, M.H.; Redpath, C.J.; Roberts, J.D. The short QT syndrome: Proposed diagnostic criteria. J. Am. Coll. Cardiol. 2011, 57, 802–812. https://doi.org/10.1016/j.jacc.2010.09.048.
- 49.
Thorsen, K.; Dam, V.S.; Kjaer-Sorensen, K.; et al. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat. Commun. 2017, 8, 1696. https://doi.org/10.1038/s41467-017-01630-0.
- 50.
Christiansen, M.K.; Kjaer-Sorensen, K.; Clavsen, N.C.; et al. Genetic analysis identifies the SLC4A3 anion exchanger as a major gene for short QT syndrome. Heart Rhythm 2023, 20, 1136–1143. https://doi.org/10.1016/j.hrthm.2023.02.010.
- 51.
Guo, F.F.; Sun, Y.X.; Wang, X.C.; et al. Patient-Specific and Gene-Corrected Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Short QT Syndrome. Circ. Res. 2019, 124, 66–78. https://doi.org/10.1161/circresaha.118.313518.
- 52.
Giustetto, C.; Scrocco, C.; Giachino, D.; et al. The lack of effect of sotalol in short QT syndrome patients carrying the T618I mutation in the KCNH2 gene. Hear. Case Rep 2015, 1, 373–378. https://doi.org/10.1016/j.hrcr.2015.07.001.
- 53.
Hassel, D.; Scholz, E.P.; Trano, N.; et al. Deficient zebrafish ether-a-go-go-related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation 2008, 117, 866–875. https://doi.org/10.1161/CIRCULATIONAHA.107.752220.
- 54.
Odening, K.E.; Bodi, I.; Franke, G.; et al. Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility. Eur. Heart J. 2018, 40, 842–853. https://doi.org/10.1093/eurheartj/ehy761.
- 55.
El Harchi, A.; McPate, M.J.; Zhang, Y.H.; et al. Action potential clamp and mefloquine sensitivity of recombinant ‘I KS’ channels incorporating the V307L KCNQ1 mutation. J. Physiol. Pharmacol. 2010, 61, 123–131.
- 56.
El Harchi, A.; Melgari, D.; Zhang, Y.H.; et al. Action potential clamp and pharmacology of the variant 1 Short QT Syndrome T618I hERG K(+) channel. PLoS ONE 2012, 7, e52451. https://doi.org/10.1371/journal.pone.0052451.
- 57.
Patel, C.; Antzelevitch, C. Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm 2008, 5, 585–590. https://doi.org/10.1016/j.hrthm.2008.01.022.
- 58.
El-Battrawy, I.; Lan, H.; Cyganek, L.; et al. Modeling Short QT Syndrome Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J. Am. Heart Assoc. 2018, 7, e007394. https://doi.org/10.1161/JAHA.117.007394.
- 59.
Huang, M.; Liao, Z.; Li, X.; et al. Effects of Antiarrhythmic Drugs on hERG Gating in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Front. Pharmacol. 2021, 12, 675003. https://doi.org/10.3389/fphar.2021.675003.
- 60.
Zhang, H.; Hancox, J.C. In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current. Biochem. Biophys. Res. Commun. 2004, 322, 693–699. https://doi.org/10.1016/j.bbrc.2004.07.176.
- 61.
Weiss, D.L.; Seemann, G.; Sachse, F.B.; et al. Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall. Europace 2005, 7, 105–117. https://doi.org/10.1016/j.eupc.2005.04.008.
- 62.
Itoh, H.; Horie, M.; Ito, M.; et al. Arrhythmogenesis in the short-QT syndrome associated with combined HERG channel gating defects: A simulation study. Circ. J. 2006, 70, 502–508.
- 63.
Adeniran, I.; McPate, M.J.; Witchel, H.J.; et al. Increased vulnerability of human ventricle to re-entrant excitation in hERG-linked variant 1 short QT syndrome. PLoS Comput. Biol. 2011, 7, e1002313. https://doi.org/10.1371/journal.pcbi.1002313.
- 64.
Loewe, A.; Wilhelms, M.; Fischer, F.; et al. Arrhythmic potency of human ether-a-go-go-related gene mutations L532P and N588K in a computational model of human atrial myocytes. Europace 2014, 16, 435–443. https://doi.org/10.1093/europace/eut375.
- 65.
Zhang, H.; Kharche, S.; Holden, A.V.; Hancox, J.C. Repolarisation and vulnerability to re-entry in the human heart with short QT syndrome arising from KCNQ1 mutation--a simulation study. Prog. Biophys. Mol. Biol. 2008, 96, 112–131. https://doi.org/10.1016/j.pbiomolbio.2007.07.020.
- 66.
Adeniran, I.; Whittaker, D.G.; El Harchi, A.; et al. In silico investigation of a KCNQ1 mutation associated with short QT syndrome. Sci. Rep. 2017, 7, 8469. https://doi.org/10.1038/s41598-017-08367-2.
- 67.
Whittaker, D.G.; Colman, M.A.; Ni, H.; et al. Human Atrial Arrhythmogenesis and Sinus Bradycardia in KCNQ1-Linked Short QT Syndrome: Insights From Computational Modelling. Front. Physiol. 2018, 9, 1402. https://doi.org/10.3389/fphys.2018.01402.
- 68.
Adeniran, I.; El Harchi, A.; Hancox, J.C.; et al. Proarrhythmia in KCNJ2-linked short QT syndrome: Insights from modelling. Cardiovasc. Res. 2012, 94, 66–76. https://doi.org/10.1093/cvr/cvs082.
- 69.
Whittaker, D.G.; Ni, H.; El Harchi, A.; et al. Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria. PLoS Comput. Biol. 2017, 13, e1005593. https://doi.org/10.1371/journal.pcbi.1005593.
- 70.
Extramiana, F.; Antzelevitch, C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation 2004, 110, 3661–3666. https://doi.org/10.1161/01.Cir.0000143078.48699.0c.
- 71.
Deo, M.; Ruan, Y.; Pandit, S.V.; et al. KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. Proc. Natl. Acad. Sci. USA 2013, 110, 4291–4296. https://doi.org/10.1073/pnas.1218154110.
- 72.
McPate, M.J.; Duncan, R.S.; Hancox, J.C.; et al. Pharmacology of the short QT syndrome N588K-hERG K(+) channel mutation: Differential impact on selected class I and class III antiarrhythmic drugs. Br. J. Pharmacol. 2008, 155, 957–966. https://doi.org/10.1038/bjp.2008.325.
- 73.
Fan, X.H.; Yang, G.Q.; Kowitz, J.; et al. Preclinical short QT syndrome models: Studying the phenotype and drug-screening. Europace 2022, 24, 481–493. https://doi.org/10.1093/europace/euab214.
- 74.
Zhang, S.; Lu, W.; Yang, F.; et al. Computational analysis of arrhythmogenesis in KCNH2 T618I mutation-associated short QT syndrome and the pharmacological effects of quinidine and sotalol. NPJ Syst. Biol. Appl. 2022, 8, 43. https://doi.org/10.1038/s41540-022-00254-5.
- 75.
Nof, E.; Burashnikov, A.; Antzelevitch, C. Cellular basis for atrial fibrillation in an experimental model of short QT1: Implications for a pharmacological approach to therapy. Heart Rhythm 2010, 7, 251–257. https://doi.org/10.1016/j.hrthm.2009.10.017.
- 76.
Giudicessi, J.R.; Ackerman, M.J. Potassium-channel mutations and cardiac arrhythmias—Diagnosis and therapy. Nat. Rev. Cardiol. 2012, 9, 319–332. https://doi.org/10.1038/nrcardio.2012.3.
- 77.
Zhao, Z.; Li, X.; El-Battrawy, I.; et al. Drug Testing in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Clin. Pharmacol. Ther. 2019, 106, 642–651. https://doi.org/10.1002/cpt.1449.
- 78.
Lan, H.; Xu, Q.; El-Battrawy, I.; et al. Ionic Mechanisms of Disopyramide Prolonging Action Potential Duration in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Front. Pharmacol. 2020, 11, 554422. https://doi.org/10.3389/fphar.2020.554422.
- 79.
Whittaker, D.G.; Hancox, J.C.; Zhang, H. In silico Assessment of Pharmacotherapy for Human Atrial Patho-Electrophysiology Associated With hERG-Linked Short QT Syndrome. Front. Physiol. 2018, 9, 1888. https://doi.org/10.3389/fphys.2018.01888.
- 80.
Lerche, C.; Bruhova, I.; Lerche, H.; et al. Chromanol 293B binding in KCNQ1 (Kv7.1) channels involves electrostatic interactions with a potassium ion in the selectivity filter. Mol. Pharmacol. 2007, 71, 1503–1511. https://doi.org/10.1124/mol.106.031682.
- 81.
Kang, J.; Chen, X.L.; Wang, L.; Rampe, D. Interactions of the antimalarial drug mefloquine with the human cardiac potassium channels KvLQT1/minK and HERG. J. Pharmacol. Exp. Ther. 2001, 299, 290–296.
- 82.
Campbell, C.M.; Campbell, J.D.; Thompson, C.H.; et al. Selective targeting of gain-of-function KCNQ1 mutations predisposing to atrial fibrillation. Circ. Arrhythmia Electrophysiol. 2013, 6, 960–966. https://doi.org/10.1161/CIRCEP.113.000439.
- 83.
An, M.Y.; Sun, K.; Li, Y.; et al. Therapeutic effects of a taurine-magnesium coordination compound on experimental models of type 2 short QT syndrome. Acta Pharmacol. Sin. 2018, 39, 382–392. https://doi.org/10.1038/aps.2017.86.
- 84.
Patel, C.; Yan, G.X.; Antzelevitch, C. Short QT syndrome: From bench to bedside. Circ. Arrhythmia Electrophysiol. 2010, 3, 401–408. https://doi.org/10.1161/CIRCEP.109.921056.
- 85.
Ren, S.; Pang, C.; Li, J.; et al. Styrax blocks inward and outward current of Kir2.1 channel. Channels 2017, 11, 46–54. https://doi.org/10.1080/19336950.2016.1207022.
- 86.
Ji, Y.; Veldhuis, M.G.; Zandvoort, J.; et al. PA-6 inhibits inward rectifier currents carried by V93I and D172N gain-of-function KIR2.1 channels, but increases channel protein expression. J Biomed. Sci. 2017, 24, 44. https://doi.org/10.1186/s12929-017-0352-x.
- 87.
Luo, C.; Wang, K.; Zhang, H. In silico assessment of the effects of quinidine, disopyramide and E-4031 on short QT syndrome variant 1 in the human ventricles. PLoS ONE 2017, 12, e0179515. https://doi.org/10.1371/journal.pone.0179515.
- 88.
Luo, C.; Wang, K.; Zhang, H. Modelling the effects of quinidine, disopyramide, and E-4031 on short QT syndrome variant 3 in the human ventricles. Physiol. Meas. 2017, 38, 1859–1873. https://doi.org/10.1088/1361-6579/aa8695.
- 89.
Schreibmayer, W.; Lindner, W. Stereoselective interactions of (R)- and (S)-propafenone with the cardiac sodium channel. J. Cardiovasc. Pharmacol. 1992, 20, 324–331.
- 90.
Monk, J.P.; Brogden, R.N. Mexiletine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in the treatment of arrhythmias. Drugs 1990, 40, 374–411. https://doi.org/10.2165/00003495-199040030-00005.
- 91.
Singh, B.N. Antiarrhythmic actions of amiodarone: A profile of a paradoxical agent. Am. J. Cardiol. 1996, 78, 41–53.
- 92.
Bjerregaard, P.; Jahangir, A.; Gussak, I. Targeted therapy for short QT syndrome. Expert Opin. Ther. Targets 2006, 10, 393–400. https://doi.org/10.1517/14728222.10.3.393.
- 93.
Luo, C.; Wang, K.; Zhang, H. Effects of amiodarone on short QT syndrome variant 3 in human ventricles: A simulation study. Biomed. Eng. Online 2017, 16, 69. https://doi.org/10.1186/s12938-017-0369-0.
- 94.
Awamleh García, P.; Alonso Martín, J.J.; Graupner Abad, C.; et al. Prevalence of Electrocardiographic Patterns Associated With Sudden Cardiac Death in the Spanish Population Aged 40 Years or Older. Results of the OFRECE Study. Rev. Esp. Cardiol. 2017, 70, 801–807. https://doi.org/10.1016/j.rec.2016.11.039.
- 95.
Villafane, J.; Young, M.; Atallah, J.; et al. Long-term follow-up of a pediatric cohort with short QT syndrome. Heart Rhythm 2012, 9, 1920. https://doi.org/10.1016/j.hrthm.2012.09.019.
- 96.
Miyamoto, A.; Hayashi, H.; Yoshino, T.; et al. Clinical and electrocardiographic characteristics of patients with short QT interval in a large hospital-based population. Heart Rhythm 2012, 9, 66–74. https://doi.org/10.1016/j.hrthm.2011.08.016.
- 97.
Mariani, M.V.; Pierucci, N.; Fanisio, F.; et al. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. Medicina 2024, 60, 94. https://doi.org/10.3390/medicina60010094.
- 98.
Guerrier, K.; Kwiatkowski, D.; Czosek, R.J.; et al. Short QT Interval Prevalence and Clinical Outcomes in a Pediatric Population. Circ. Arrhythmia Electrophysiol. 2015, 8, 1460–1464. https://doi.org/10.1161/circep.115.003256.
- 99.
Wang, B.; Ren, Q.; Cui, X.; et al. Generation of KCNH2 heterozygous knockout induced pluripotent stem cell (iPSC) line (Long and Short QT Syndrome). Stem Cell Res. 2024, 77, 103400. https://doi.org/10.1016/j.scr.2024.103400.
- 100.
Maurissen, T.L.; Kawatou, M.; Lopez-Davila, V.; et al. Modeling mutation-specific arrhythmogenic phenotypes in isogenic human iPSC-derived cardiac tissues. Sci. Rep. 2024, 14, 2586. https://doi.org/10.1038/s41598-024-52871-1.