- 1.
Sattler, M.; Mambetsariev, I.; Fricke, J.; et al. A Closer Look at EGFR Inhibitor Resistance in Non-Small Cell Lung Cancer through the Lens of Precision Medicine. J. Clin. Med. 2023, 12, 1936. https://doi.org/10.3390/jcm12051936.
- 2.
Kuczynski, E.A.; Sargent, D.J.; Grothey, A.; et al. Drug rechallenge and treatment beyond progression--implications for drug resistance. Nat. Rev. Clin. Oncol. 2013, 10, 571–587. https://doi.org/10.1038/nrclinonc.2013.158.
- 3.
Sharma, S.V.; Lee, D.Y.; Li, B.; et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010, 141, 69–80. https://doi.org/10.1016/j.cell.2010.02.027.
- 4.
He, J.; Qiu, Z.; Fan, J.; et al. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct. Target. Ther. 2024, 9, 209. https://doi.org/10.1038/s41392-024-01891-4.
- 5.
Shen, S.; Faouzi, S.; Bastide, A.; et al. An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat. Commun. 2019, 10, 5713. https://doi.org/10.1038/s41467-019-13360-6.
- 6.
Echeverria, G.V.; Ge, Z.; Seth, S.; et al. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci. Transl. Med. 2019, 11, eaav0936. https://doi.org/10.1126/scitranslmed.aav0936.
- 7.
Criscione, S.W.; Martin, M.J.; Oien, D.B.; et al. The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells. NPJ Precis. Oncol. 2022, 6, 95. https://doi.org/10.1038/s41698-022-00337-w.
- 8.
Ogden, S.; Carys, K.; Ahmed, I.; et al. Regulatory chromatin rewiring promotes metabolic switching during adaptation to oncogenic receptor tyrosine kinase inhibition. Oncogene 2022, 41, 4808–4822. https://doi.org/10.1038/s41388-022-02465-w.
- 9.
Kurppa, K.J.; Liu, Y.; To, C.; et al. Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. Cancer Cell 2020, 37, 104–122.e12. https://doi.org/10.1016/j.ccell.2019.12.006.
- 10.
Dhimolea, E.; de Matos Simoes, R.; Kansara, D.; et al. An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence. Cancer Cell 2021, 39, 240–256.e11. https://doi.org/10.1016/j.ccell.2020.12.002.
- 11.
Rehman, S.K.; Haynes, J.; Collignon, E.; et al. Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy. Cell. 2021, 184, 226–242.e21. https://doi.org/10.1016/j.cell.2020.11.018.
- 12.
Rosano, D.; Sofyali, E.; Dhiman, H.; et al. Long-term Multimodal Recording Reveals Epigenetic Adaptation Routes in Dormant Breast Cancer Cells. Cancer Discov. 2024, 14, 866–889. https://doi.org/10.1158/2159-8290.CD-23-1161.
- 13.
Zhang, X.; Ma, Y.; Ma, J.; et al. Glutathione Peroxidase 4 as a Therapeutic Target for Anti-Colorectal Cancer Drug-Tolerant Persister Cells. Front. Oncol. 2022, 12, 913669. https://doi.org/10.3389/fonc.2022.913669.
- 14.
Fox, D.B.; Garcia, N.M.G.; McKinney, B.J.; et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab. 2020, 2, 318–334. https://doi.org/10.1038/s42255-020-0191-z.
- 15.
Oren, Y.; Tsabar, M.; Cuoco, M.S.; et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 2021, 596, 576–582. https://doi.org/10.1038/s41586-021-03796-6.
- 16.
Cohen, A.A.; Geva-Zatorsky, N.; Eden, E.; et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 2008, 322, 1511–1516. https://doi.org/10.1126/science.1160165.
- 17.
Bellio, C.; Emperador, M.; Castellano, P.; et al. GDF15 Is an Eribulin Response Biomarker also Required for Survival of DTP Breast Cancer Cells. Cancers 2022, 14, 2562. https://doi.org/10.3390/cancers14102562.
- 18.
Chang, C.A.; Jen, J.; Jiang, S.; et al. Ontogeny and Vulnerabilities of Drug-Tolerant Persisters in HER2+ Breast Cancer. Cancer Discov. 2022, 12, 1022–1045. https://doi.org/10.1158/2159-8290.CD-20-1265.
- 19.
Chen, M.; Mainardi, S.; Lieftink, C.; et al. Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse. Cell Rep. Med. 2024, 5, 101471. https://doi.org/10.1016/j.xcrm.2024.101471.
- 20.
Momeny, M.; Tienhaara, M.; Sharma, M.; et al. DUSP6 inhibition overcomes neuregulin/HER3-driven therapy tolerance in HER2+ breast cancer. EMBO Mol. Med. 2024, 16, 1603–1629. https://doi.org/10.1038/s44321-024-00088-0.
- 21.
Ramirez, M.; Rajaram, S.; Steininger, R.J.; et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 2016, 7, 10690. Published 2016 Feb 19. https://doi.org/10.1038/ncomms10690.
- 22.
França, G.S.; Baron, M.; King, B.R.; et al. Cellular adaptation to cancer therapy along a resistance continuum. Nature 2024, 631, 876–883. https://doi.org/10.1038/s41586-024-07690-9.
- 23.
Guler, G.D.; Tindell, C.A.; Pitti, R.; et al. Repression of Stress-Induced LINE-1 Expression Protects Cancer Cell Subpopulations from Lethal Drug Exposure. Cancer Cell 2017, 32, 221–237.e13. https://doi.org/10.1016/j.ccell.2017.07.002.
- 24.
Ravindran Menon, D.; Das, S.; Krepler, C.; et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 2015, 34, 4448–4459. https://doi.org/10.1038/onc.2014.372; Erratum in Oncogene 2015, 34, 4545. https://doi.org/10.1038/onc.2014.432.
- 25.
Liau, B.B.; Sievers, C.; Donohue, L.K.; et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell 2017, 20, 233–246.e7. https://doi.org/10.1016/j.stem.2016.11.003.
- 26.
Vinogradova, M.; Gehling, V.S.; Gustafson, A.; et al. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat. Chem. Biol. 2016, 12, 531–538. https://doi.org/10.1038/nchembio.2085.
- 27.
Gupta, P.B.; Fillmore, C.M.; Jiang, G.; et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011, 146, 633–644. https://doi.org/10.1016/j.cell.2011.07.026.
- 28.
Shaffer, S.M.; Dunagin, M.C.; Torborg, S.R.; et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 2017, 546, 431–435. https://doi.org/10.1038/nature22794.
- 29.
Spencer, S.L.; Gaudet, S.; Albeck, J.G.; et al. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009, 459, 428–432. https://doi.org/10.1038/nature08012.
- 30.
Dar, R.D.; Hosmane, N.N.; Arkin, M.R.; et al. Screening for noise in gene expression identifies drug synergies. Science 2014, 344, 1392–1396. https://doi.org/10.1126/science.1250220.
- 31.
Goyal, Y.; Busch, G.T.; Pillai, M.; et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature 2023, 620, 651–659. https://doi.org/10.1038/s41586-023-06342-8.
- 32.
Torre, E.A.; Arai, E.; Bayatpour, S.; et al. Genetic screening for single-cell variability modulators driving therapy resistance. Nat. Genet. 2021, 53, 76–85. https://doi.org/10.1038/s41588-020-00749-z.
- 33.
Roesch, A.; Vultur, A.; Bogeski, I.; et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B (high) cells. Cancer Cell 2013, 23, 811–825. https://doi.org/10.1016/j.ccr.2013.05.003.
- 34.
Roesch, A.; Fukunaga-Kalabis, M.; Schmidt, E.C.; et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 2010, 141, 583–594. https://doi.org/10.1016/j.cell.2010.04.020.
- 35.
Kalkavan, H.; Chen, M.J.; Crawford, J.C.; et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 2022, 185, 3356–3374.e22. https://doi.org/10.1016/j.cell.2022.07.025.
- 36.
Iyer, D.P.; Khoei, H.H.; van der Weijden, V.A.; et al. mTOR activity paces human blastocyst stage developmental progression. Cell 2024. https://doi.org/10.1016/j.cell.2024.08.048.
- 37.
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. https://doi.org/10.1038/s41580-018-0080-4.
- 38.
Hata, A.N.; Niederst, M.J.; Archibald, H.L.; et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 2016, 22, 262–269. https://doi.org/10.1038/nm.4040.
- 39.
Su, Y.; Wei, W.; Robert, L.; et al. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc. Natl. Acad. Sci. USA 2017, 114, 13679–13684. https://doi.org/10.1073/pnas.1712064115.
- 40.
Suda, K.; Tomizawa, K.; Fujii, M.; et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J. Thorac. Oncol. 2011, 6, 1152–1161. https://doi.org/10.1097/JTO.0b013e318216ee52.
- 41.
Song, K.A.; Niederst, M.J.; Lochmann, T.L.; et al. Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM. Clin. Cancer Res. 2018, 24, 197–208. https://doi.org/10.1158/1078-0432.CCR-17-1577.
- 42.
Perillo, B.; Di Donato, M.; Pezone, A.; et al. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. https://doi.org/10.1038/s12276-020-0384-2.
- 43.
Wang, R.; Mi, Y.; Ni, J.; et al. Identification of PRDX5 as A Target for The Treatment of Castration-Resistant Prostate Cancer. Adv. Sci. 2024, 11, e2304939. https://doi.org/10.1002/advs.202304939.
- 44.
Celeste, F.V.; Powers, S. Induction of Multiple Alternative Mitogenic Signaling Pathways Accompanies the Emergence of Drug-Tolerant Cancer Cells. Cancers 2024, 16, 1001. https://doi.org/10.3390/cancers16051001.
- 45.
Zhang, Z.; Qin, S.; Chen, Y.; et al. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol. Med. 2022, 14, e14903. https://doi.org/10.15252/emmm.202114903.
- 46.
Torrente, L.; DeNicola, G.M. Targeting NRF2 and Its Downstream Processes: Opportunities and Challenges. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 279–300. https://doi.org/10.1146/annurev-pharmtox-052220-104025.
- 47.
He, F.; Antonucci, L.; Karin, M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020, 41, 405–416. https://doi.org/10.1093/carcin/bgaa039.
- 48.
Tournier, C.; Zhang, W.; Chattrakarn, S.; et al. NRF2-Mediated Persistent Adaptation of Oesophageal Adenocarcinoma Cells to HER2 Inhibition. 2024. Available online: https://www.researchsquare.com/article/rs-4504280/v1(accessed on 1 October 2024).
- 49.
Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022, 185, 2401–2421. https://doi.org/10.1016/j.cell.2022.06.003.
- 50.
Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017, 551, 247–250. https://doi.org/10.1038/nature24297.
- 51.
Schwab, A.; Rao, Z.; Zhang, J.; et al. Zeb1 mediates EMT/plasticity-associated ferroptosis sensitivity in cancer cells by regulating lipogenic enzyme expression and phospholipid composition. Nat. Cell Biol. 2024, 26, 1470–1481. https://doi.org/10.1038/s41556-024-01464-1.
- 52.
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017, 547, 453–457. https://doi.org/10.1038/nature23007.
- 53.
Gotorbe, C.; Durivault, J.; Meira, W.; et al. Metabolic Rewiring toward Oxidative Phosphorylation Disrupts Intrinsic Resistance to Ferroptosis of the Colon Adenocarcinoma Cells. Antioxidants 2022, 11, 2412. https://doi.org/10.3390/antiox11122412.
- 54.
Zhang, Z.; Tan, Y.; Huang, C.; Wei, X. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine 2023, 89, 104483. https://doi.org/10.1016/j.ebiom.2023.104483.
- 55.
Du, R.; Huang, C.; Liu, K.; et al. Targeting AURKA in Cancer: Molecular mechanisms and opportunities for Cancer therapy. Mol. Cancer 2021, 20, 15. https://doi.org/10.1186/s12943-020-01305-3.
- 56.
Anshabo, A.T.; Milne, R.; et al. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front. Oncol. 2021, 11, 678559. https://doi.org/10.3389/fonc.2021.678559.
- 57.
Hirata, E.; Girotti, M.R.; Viros, A.; et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 2015, 27, 574–588. https://doi.org/10.1016/j.ccell.2015.03.008.
- 58.
Obenauf, A.C.; Zou, Y.; Ji, A.L.; et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 2015, 520, 368–372. https://doi.org/10.1038/nature14336.
- 59.
Mancini, C.; Lori, G.; Pranzini, E.; et al. Metabolic challengers selecting tumor-persistent cells. Trends Endocrinol. Metab. 2024, 35, 263–276. https://doi.org/10.1016/j.tem.2023.11.005.
- 60.
Son, B.; Lee, S.; Youn, H.; et al. The role of tumor microenvironment in therapeutic resistance. Oncotarget. 2017, 8, 3933–3945. https://doi.org/10.18632/oncotarget.13907.
- 61.
Ebi, H. Drug-Tolerant Persister Cells after EGFR Tyrosine Kinase Inhibitor Treatment: Their Origin and the Influences from the Tumor Microenvironment. J. Thorac. Oncol. 2023, 18, 399–401. https://doi.org/10.1016/j.jtho.2022.12.010.
- 62.
Nakasone, E.S.; Askautrud, H.A.; Kees, T.; et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 2012, 21, 488–503. https://doi.org/10.1016/j.ccr.2012.02.017.
- 63.
Junttila, M.R.; de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501, 346–354. https://doi.org/10.1038/nature12626.
- 64.
Shen, S.; Vagner, S.; Robert, C. Persistent Cancer Cells: The Deadly Survivors. Cell 2020, 183, 860–874. https://doi.org/10.1016/j.cell.2020.10.027.
- 65.
Niu, N.; Shen, X.; Wang, Z.; et al. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell 2024, 42, 869–884.e9. https://doi.org/10.1016/j.ccell.2024.03.005.
- 66.
Gunnarsson, E.B.; De, S.; Leder, K.; Foo, J. Understanding the role of phenotypic switching in cancer drug resistance. J. Theor. Biol. 2020, 490, 110162. https://doi.org/10.1016/j.jtbi.2020.110162.
- 67.
Russo, M.; Pompei, S.; Sogari, A.; et al. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Genet. 2022, 54, 976–984. https://doi.org/10.1038/s41588-022-01105-z.
- 68.
Sahoo, S.; Mishra, A.; Kaur, H.; et al. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer 2021, 3, zcab027. https://doi.org/10.1093/narcan/zcab027.