2602003045
  • Open Access
  • Study Protocol

Integrated Assessment of Night Shift Work and Chemical Exposure in Female Healthcare Workers: A Study Protocol

  • Silvia Vivarelli *,   
  • Maria Cullurà,   
  • Concettina Fenga

Received: 12 Dec 2025 | Revised: 28 Jan 2026 | Accepted: 10 Feb 2026 | Published: 12 Feb 2026

Abstract

Night shift work (NSW) is common among healthcare workers (HCW) and can disrupt circadian rhythms, leading to metabolic dysregulation, systemic inflammation, and increased breast cancer risk in women. In hospital settings, NSW often co-occurs with exposure to disinfectants and sterilants, creating combined circadian and chemical stress. Female HCW may be particularly vulnerable due to sex-specific endocrine factors and cumulative chemical exposures. This prospective study protocol proposes an integrated occupational health surveillance model comparing night and day shift female HCW. The protocol combines clinical evaluation, molecular biomarker profiling, lifestyle and psychosocial assessment, as well as environmental monitoring of key chemical exposures. Participants will undergo baseline assessment, a 1-month follow-up to monitor adherence to personalized health recommendations, and a 12-month follow-up to evaluate changes in clinical, metabolic, molecular, and lifestyle parameters. The multidimensional approach aims to clarify the interactions between circadian disruption and chemical exposures, identify early biomarkers of risk, and help the development of targeted interventions to improve metabolic health, reduce chemical burden, and support circadian alignment and overall well-being in female HCW. 

References 

  • 1.

    Boivin, D.B.; Boudreau, P.; Kosmadopoulos, A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythm. 2022, 37, 3–28. https://doi.org/10.1177/07487304211064218.

  • 2.

    Vivarelli, S.; Formica, T.; Puliatti, Y.; et al. Night shift work and breast cancer: From etiopathology to precision risk analysis. npj Breast Cancer 2025. https://doi.org/10.1038/s41523-025-00863-3.

  • 3.

    Czyż-Szypenbejl, K.; Mędrzycka-Dąbrowska, W. The Impact of Night Work on the Sleep and Health of Medical Staff—A Review of the Latest Scientific Reports. J. Clin. Med. 2024, 13, 4505. https://doi.org/10.3390/jcm13154505.

  • 4.

    Zhang, Y.; Papantoniou, K. Night shift work and its carcinogenicity. Lancet Oncol. 2019, 20, e550. https://doi.org/10.1016/S1470-2045(19)30578-9.

  • 5.

    Vivarelli, S.; Spatari, G.; Costa, C.; et al. Computational Analyses Reveal Deregulated Clock Genes Associated with Breast Cancer Development in Night Shift Workers. Int. J. Mol. Sci. 2024, 25, 8659. https://doi.org/10.3390/ijms25168659.

  • 6.

    Church, J.D.; Kadukhina, E.; Aiello, I.; et al. Circadian regulation of extracellular vesicle biogenesis, composition, and release. npj Biol. Timing Sleep 2025, 2, 37. https://doi.org/10.1038/s44323-025-00053-1.

  • 7.

    Charlier, B.; Coglianese, A.; De Rosa, F.; et al. Chemical Risk in Hospital Settings: Overview on Monitoring Strategies and International Regulatory Aspects. J. Public Health Res. 2021, 10, 1993. https://doi.org/10.4081/jphr.2021.1993.

  • 8.

    Betancur, S.; Leak Bryant, A.; Conklin, J.; et al. Occupational exposure to chemical substances and health outcomes among hospital environmental services workers: A scoping review of international studies. J. Occup. Environ. Hyg. 2024, 21, 287–309. https://doi.org/10.1080/15459624.2024.2311870.

  • 9.

    Beyan, A.C.; Emerce, E.; Tuna, G.; et al. Chemical Risks, Genotoxicity, and Oxidative Stress in Healthcare Workers. Toxics 2025, 13, 189. https://doi.org/10.3390/toxics13030189.

  • 10.

    Dematteo, R.; Keith, M.M.; Brophy, J.T.; et al. Chemical Exposures of Women Workers in the Plastics Industry with Particular Reference to Breast Cancer and Reproductive Hazards. New Solut. J. Environ. Occup. Health Policy 2013, 22, 427–448. https://doi.org/10.2190/NS.22.4.d.

  • 11.

    Peters, S.; Undem, K.; Solovieva, S.; et al. Narrative review of occupational exposures and noncommunicable diseases. Ann. Work Exposures Health 2024, 68, 562–580. https://doi.org/10.1093/annweh/wxae045.

  • 12.

    Roquelaure, Y.; Luce, D.; Descatha, A.; et al. Un modèle organisationnel de l’exposome professionnel. Médecine/Sciences 2022, 38, 288–293. https://doi.org/10.1051/medsci/2022022.

  • 13.

    Lie, J.-A.S.; Zienolddiny-Narui, S.; Bråtveit, M. Effects of the combined exposure to chemicals and unusual working hours. Ann. Work Exposures Health 2024, 68, 647–656. https://doi.org/10.1093/annweh/wxae033.

  • 14.

    Lillo, A.; Antoncecchi, E.; Antoncecchi, V.; et al. The Cardiovascular Risk Awareness and Health Lifestyle of Italian Women. J. Clin. Med. 2024, 13, 3253. https://doi.org/10.3390/jcm13113253.

  • 15.

    Khalili, D.; Khayamzadeh, M.; Kohansal, K.; et al. Are HOMA-IR and HOMA-B good predictors for diabetes and pre-diabetes subtypes? BMC Endocr. Disord. 2023, 23, 39. https://doi.org/10.1186/s12902-023-01291-9.

  • 16.

    Blanco-Grau, A.; Gabriel-Medina, P.; Rodriguez-Algarra, F.; et al. Assessing Liver Fibrosis Using the FIB4 Index in the Community Setting. Diagnostics 2021, 11, 2236. https://doi.org/10.3390/diagnostics11122236.

  • 17.

    Graille, M.; Wild, P.; Sauvain, J.-J.; et al. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 3743. https://doi.org/10.3390/ijms21113743.

  • 18.

    Li, Y.; Browne, R.W.; Bonner, M.R.; et al. Positive Relationship between Total Antioxidant Status and Chemokines Observed in Adults. Oxid. Med. Cell. Longev. 2014, 2014, 693680. https://doi.org/10.1155/2014/693680.

  • 19.

    Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. https://doi.org/10.1079/PHN2005898.

  • 20.

    Sofi, F.; Dinu, M.; Pagliai, G.; et al. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. https://doi.org/10.1080/09637486.2017.1287884.

  • 21.

    Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; et al. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. https://doi.org/10.1016/0165-1781(89)90047-4.

  • 22.

    Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. https://doi.org/10.1093/sleep/14.6.540.

  • 23.

    Cavallera, G.M.; Boari, G. Validation of the Italian Version of the Morningness-Eveningness Questionnaire for Adolescents by A. Lancry and Th. Arbault. Med. Sci. Monit. 2015, 21, 2685–2693. https://doi.org/10.12659/MSM.894091.

  • 24.

    Topp, C.W.; Østergaard, S.D.; Søndergaard, S.; et al. The WHO-5 Well-Being Index: A Systematic Review of the Literature. Psychother. Psychosom. 2015, 84, 167–176. https://doi.org/10.1159/000376585.

  • 25.

    van Vegchel, N.; de Jonge, J.; Bosma, H.; et al. Reviewing the effort–reward imbalance model: Drawing up the balance of 45 empirical studies. Soc. Sci. Med. 2005, 60, 1117–1131. https://doi.org/10.1016/j.socscimed.2004.06.043.

  • 26.

    Magnavita, N.; Meraglia, I.; Viti, G.; et al. The Work Ability Index (WAI) in the Healthcare Sector: A Cross-Sectional/Retrospective Assessment of the Questionnaire. Int. J. Environ. Res. Public Health 2024, 21, 349. https://doi.org/10.3390/ijerph21030349.

  • 27.

    Kalyva, M.E.; Vist, G.E.; Diemar, M.G.; et al. Accessible methods and tools to estimate chemical exposure in humans to support risk assessment: A systematic scoping review. Environ. Pollut. 2024, 352, 124109. https://doi.org/10.1016/j.envpol.2024.124109.

  • 28.

    Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. https://doi.org/10.1038/s41392-024-01735-1.

  • 29.

    Carberry, C.K.; Rager, J.E. The impact of environmental contaminants on extracellular vesicles and their key molecular regulators: A literature and database-driven review. Environ. Mol. Mutagen. 2023, 64, 50–66. https://doi.org/10.1002/em.22522.

  • 30.

    Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. https://doi.org/10.1093/ije/dyr236.

  • 31.

    Pronk, A.; Loh, M.; Kuijpers, E.; et al. Applying the exposome concept to working life health. Environ. Epidemiol. 2022, 6, e185. https://doi.org/10.1097/EE9.0000000000000185.

  • 32.

    de Celis, I.L.R.; de Bobadilla-Güémez, S.F.; del Mar Alonso-Almeida, M.; et al. Women’s occupational health and safety management: An issue for corporate social responsibility. Saf. Sci. 2017, 91, 61–70. https://doi.org/10.1016/j.ssci.2016.07.019.

  • 33.

    Faisandier, L.; Bonneterre, V.; De Gaudemaris, R.; et al. Occupational exposome: A network-based approach for characterizing Occupational Health Problems. J. Biomed. Inform. 2011, 44, 545–552. https://doi.org/10.1016/j.jbi.2011.02.010.

  • 34.

    Coutinho, H.; Queirós, C.; Henriques, A.; et al. Work-related determinants of psychosocial risk factors among employees in the hospital setting. Work 2019, 61, 551–560. https://doi.org/10.3233/WOR-182825.

  • 35.

    Arakelyan, S.; Lone, N.; Anand, A.; et al. Effectiveness of holistic assessment–based interventions in improving outcomes in adults with multiple long-term conditions and/or frailty: An umbrella review protocol. JBI Evid. Synth. 2023, 21, 1863–1878. https://doi.org/10.11124/JBIES-22-00406.

Share this article:
How to Cite
Vivarelli, S.; Cullurà, M.; Fenga, C. Integrated Assessment of Night Shift Work and Chemical Exposure in Female Healthcare Workers: A Study Protocol. International Journal of Exposome and Toxicology 2026, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.