2504000446
  • Open Access
  • Editorial
Therapeutic Advances and Novel Drug Treatment Opportunities in the Neuromuscular Disorders Area
  • Corrado Angelini

Abstract

Several molecular advances have transformed the treatment landscape in the field of neuromuscular disorders, bringing more genetic testing for screening, better biomarkers, new innovative therapies that target specific disease pathways and mechanisms, and a multidisciplinary approach to care. The field includes both genetic and acquired diseases, so the landscape is at various opportunity stages. These advancements have led to more precise diagnoses and personalized medicine in the management of neuromuscular disorders, which can be life-altering for patients. This Editorial examines how the emergence of new therapies impacts the survival and motility of children and adults with spinal muscular atrophy and Duchenne or Becker muscular dystrophy, limb girdle muscular dystrophy, late-onset glycogenosis type 2, myotonic dystrophy and facioscapulohumeral dystrophy. Advances over the past two decades have been substantial in myasthenia gravis (MG) the most common acquired neuromuscular transmission disorder. Despite the existence of few refractory cases, the goal of treatment is the complete remission of symptoms, achieved by thymectomy, immunosuppression, intravenous immunoglobulin, or monoclonal antibody. Advances have been substantial both for serum-positive and serum-negative MG patients who are benefitting from an expansion of treatments since more therapies are available. Also, in the field of metabolic disorders, the use of diet supplements and exercise appears important.

References 

  • 1.
    Margeta, M. Neuromuscular disease: 2023 update. Free. Neuropathol. 2023, 4, 2. https://doi.org/10.17879/freeneuropathology-2023-4682.
  • 2.
    Angelini, C. Diagnosis and management of autoimmune myasthenia gravis. Clin. Drug Investig. 2011, 31, 1–14. https://doi.org/10.2165/11584740-000000000-00000.
  • 3.
    Parente, V.; Corti, S. Advances in spinal muscular atrophy therapeutics. Ther. Adv. Neurol. Disord. 2018, 11, 1–13. https://doi.org/10.1177/1756285618754501.
  • 4.
    Mercuri, E.; Deconinck, N.; Mazzone, E.S.; et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): A phase 3, double-blind, randomized, placebo-controlled trial. Lancet Neurol. 2022, 21, 42–52. https://doi.org/10.1016/S1474-4422(21)00367-7.
  • 5.
    Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; et al. Nusinersen versus Sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 2018, 378, 625–635.
  • 6.
    Finkel, R.S.; Mercuri, E.; Darras, B.T.; et al. Nusinersen versus Sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 2017, 377, 1723–1732.
  • 7.
    Mendell, J.R.; Al-Zaidy, S.; Shell, R.; et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 2017, 377, 1713–1722.
  • 8.
    Günther, R.; Wurster, C.D.; Brakemeier, C.S.; et al. Long-term efficacy and safety of Nusinersen in adults with 5q spinal muscular atrophy: A prospective European multinational observational study. Lancet Reg. Health—Eur. 2024, 39, 100862. doi.org/10.1016/j.lanepe.2024.100862.
  • 9.
    Bonifati, D.M.; Witchel, S.F.; Ermani, M.; et al. The glucocorticoid receptor N363S polymorphism and steroid response in Duchenne dystrophy. J. Neurol. Neurosurg. Psychiatry 2006, 77, 1177–1179.
  • 10.
    Angelini, C.; Pegoraro, E.; Turella, E.; et al. Deflazacort in Duchenne dystrophy: Study of long-term effect. Muscle Nerve 1994, 17, 386–391.
  • 11.
    Guglieri, M.; Bushby, K.; McDermott, M.P.; et al. Effect of different corticosteroid dosing regimens on clinical outcomes in boys with Duchenne muscular dystrophy: A randomized clinical trial. JAMA 2022, 327, 1456–1468. https://doi.org/10.1001/jama.2022.4315.
  • 12.
    Smith, E.C.; Conklin, L.S.; Hoffman, E.P.; et al. Efficacy and safety of vamorolone in Duchenne muscular dystrophy: An 18-month interim analysis of a non-randomized open-label extension study. PLoS Med. 2020, 17, e1003222.
  • 13.
    Guglieri, M.; Clemens, P.R.; Perlman, S.J.; et al. Efficacy and safety of vamorolone vs. placebo and prednisone among boys with Duchenne muscular dystrophy: A randomized clinical trial. JAMA Neurol. 2022, 79, 1005–1014.
  • 14.
    Angelini, C.; Marozzo, R.; Pegoraro, V. Current and emergent therapies in Becker Muscular Dystrophy (BMD). Acta Myol. 2019, 38, 172–179.
  • 15.
    Mercuri, E.; Vilchez, J.J.; Boespflug-Tanguy, O.; et al. Safety and efficacy of givinostat in boys with Duchenne muscular dystrophy (EPIDYS): A multicentre, randomized, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2024, 23, 393–403.
  • 16.
    Angelini, C.; Marozzo, R.; Pegoraro, V. Current and emergent therapies in Becker Muscular Dystrophy (BMD). Acta Myol. 2019, 38, 172–179.
  • 17.
    ‌Mendell, J.R.; Rodino-Klapac, L.R.; Rosales-Quintero, X.; et al. Limb-girdle muscular dystrophy type 2D gene therapy restores α-sarcoglycan and associated proteins. Ann. Neurol. 2009, 66, 290–297.
  • 18.
    ‌Pozsgai, E.R.; Griffin, D.A.; Heller, K.N.; et al. Systemic AAV-mediated β-sarcoglycan delivery targeting cardiac and skeletal muscle ameliorates histological and functional deficits in LGMD2E mice. Mol. Ther. 2017, 25, 855–869.
  • 19.
    ‌Mendell, J.R.; Rodino-Klapac, L.R.; Rosales, X.Q.; et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann. Neurol. 2010, 68, 629–638.
  • 20.
    ‌Potter, R.A.; Griffin, D.A.; Sondergaard, P.C.; et al. Systemic delivery of dysferlin overlap vectors provides long-term gene expression and functional improvement for dysferlinopathy. Hum. Gene Ther. 2018, 29, 749–762.
  • 21.
    ‌Qiao, C.; Wang, C.H.; Zhao, C.X.; et al. Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Mol. Ther. 2014, 22, 1890–1899.
  • 22.
    ‌Gicquel, E.; Maizonnier, N.; Foltz, S.M.; et al. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression. Hum. Mol. Genet. 2017, 26, 1952–1965.
  • 23.
    ‌Vannoy, C.H.; Xu, L.; Keramaris, E.; et al. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Hum. Gene Ther. Methods 2014, 25, 187–196.
  • 24.
    Thomas, P.J.; Xu, R.; Martin, P.T. B4GALNT2 (GALGT2) gene therapy reduces skeletal muscle pathology in the FKRP P448L mouse model of limb girdle muscular dystrophy 2I. Am. J. Pathol. 2016, 186, 2429–2448.
  • 25.
    Vannoy, C.H.; Leroy, V.; Broniowska, K.; et al. Metabolomics analysis of skeletal muscles from FKRP-deficient mice indicates improvement after gene replacement therapy. Sci. Rep. 2019, 9, 10070.
  • 26.
    Bengoechea, R.; Pittman, S.K.; Tuck, E.; et al. Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D. Hum. Mol. Genet. 2015, 24, 6588–6602.
  • 27.
    Schoser, B.; Stewart, A.; Kanters, S.; et al. Survival and long-term outcome in late-onset Pompe disease following alglucosidase alfa treatment: A systematic review and meta-analysis. J. Neurol. 2017, 264, 621–630.
  • 28.
    Pena, L.D.M.; Barohn, R.J.; Byrne, B.J.; et al. Safety, tolerability, pharmacokinetic pharmacodynamics and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset Pompe Disease: A phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul. Disord. 2019, 29, 167–186.
  • 29.
    Dimachkie, M.M.; Barohn, R.J.; Byrne, B.; et al. NEO1 and NEO-EXT studies: Long-term safety and exploratory efficacy of repeat avalglucosidase alfa dosing for 5.5 years in late-onset Pompe disease patients. Mol. Genet. Metab. 2020, 129, S49.
  • 30.
    Dimachkie, M.M.; Barohn, R.J.; Byrne, B.; et al. Long-term safety and efficacy of avalglucosidase alfa in patients with late-onset pompe disease. Neurology 2022, 99, e536–e548. https://doi.org/10.1212/WNL.0000000000200746.
  • 31.
    Diaz-Manera, J.; Kishnani, P.S.; Kushlaf, H.; et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): A phase 3, randomized, multicentre trial. Lancet Neurol. 2021, 20, 1012–1026.
  • 32.
    Kishnani, P.; Diaz Manera, J.; Toscano, A.; et al. Efficacy and safety of avalglucosidase alfa in patients with late-onset pompe disease after 97 weeks: A phase 3 randomized clinical trial. JAMA Neurol. 2023, 80, 558–567. https://doi.org/10.1001/jamaneurol.2023.0552.
  • 33.
    Parenti, G.; Fecarotta, S.; la Marca, G.; et al. A chaperone enhances blood—glucosidase activity in Pompe disease patients treated with enzyme replacement therapy. Mol. Ther. 2014, 22, 2004–2012.
  • 34.
    Schoser, B.; Roberts, M.; Byrne, B.J.; et al. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): An international, randomized, double-blind, parallel-group, phase 3 trial. Lancet Neurol. 2021, 20, 1027–1103.
  • 35.
    Angelini, C. Exercise, nutrition, and enzyme replacement therapy are efficacious in adult Pompe patients: Report from EPOC Consortium. Eur. J. Transl. Myol. 2021, 31, 9798. https://doi.org/10.4081/ejtm.2021.9798.
  • 36.
    van de Loo, K.F.; van Zeijl, N.T.; Custers, J.A.; et al. Conceptual disease model for quality of life in mitochondrial disease. Orphanet J. Rare Dis. 2022, 17, 263.
  • 37.
    Mancuso, M.; Angelini, C.; Bertini, E.; et al. Fatigue and exercise intolerance in mitochondrial diseases. Literature revision and experience of the Italian Network of Mitochondrial Diseases. Neuromuscul. Disord. 2012, 22 (Suppl. 3) S226–S229. https://doi.org/10.1016/j.nmd.2012.10.012.
  • 38.
    de Miguel, M. ARCUS Gene Editing Tool Repairs Pathological Mitochondrial DNA; Clarivate: Philadelphia, PA, USA, 2023. Available online: https://www.bioworld.com/articles/703829-arcus-gene-editing-tool-repairs-pathological-mitochondrial-dna?v=preview (accessed on 6 February 2025).
  • 39.
    Statland, J.M.; Bundy, B.N.; Consortium for clinical investigation of neurologic channelopathies. Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: A randomized controlled trial. JAMA 2012, 308, 1357–1365. https://doi.org/10.1001/jama.2012.12607.
  • 40.
    Cisco, L.A.; Sipple, M.T.; Edwards, K.M. Verapamil mitigates chloride and calcium bi-channelopathy in a myotonic dystrophy mouse model. JAMA 2024, 134, e173576. https://doi.org/10.1172/JCI173576.
  • 41.
    Tawil, R.; Wagner, K.R.; Statland, J.M.; et al. Safety and efficacy of losmapimod in facioscapulohumeral muscular dystrophy (ReDUX4): A randomized, double-blind, placebo-controlled phase 2b trial. Lancet Neurol. 2024, 23, 477–486. https://doi.org/10.1016/S1474-4422(24)00073-5.
  • 42.
    Gros, M.; Nunes, A.; Daoudlarian, D.; et al. Identification of serum interleukin 6 levels as a disease severity biomarker in facioscapulohumeral muscular dystrophy. J. Neuromuscul. Dis. 2022, 9, 83–93. https://doi.org/10.3233/JND-210711.
  • 43.
    Murai, H.; Utsugisawa, K.; Motomura, M.; et al. The Japanese clinical guidelines (2022) for myasthenia gravis and Lambert–Eaton myasthenic syndrome. Clin. Exp. Neuroimmunol. 2023, 14, 19–27. https://doi.org/10.1111/cen3.12739.
  • 44.
    Bonifati, D.M.; Angelini, C. Long-term cyclosporine treatment in a group of severe myasthenia gravis patients. J. Neurol. 1997, 244, 542–547. https://doi.org/10.1007/s004150050141.
  • 45.
    Howard, J.F., Jr.; Utsugisawa, K.; Benatar, M.; et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalized myasthenia gravis (REGAIN): A phase 3, randomized, double-blind, placebo-controlled, multicenter study. Lancet Neurol. 2017, 16, 976–986.
  • 46.
    Mantegazza, R.; Wolf, G.; Muppidi, S. Post-intervention status in patients with refractory myasthenia gravis treated with eculizumab during REGAIN and its open-label extension. Neurology 2021, 96, e610–e618 https://doi.org/10.1212/WNL.0000000000011207.
  • 47.
    Heo, Y.A. Efgartigimod alfa in generalised myasthenia gravis: A profile of its use. CNS Drugs 2023, 37, 467–473.
  • 48.
    Cortese, A.; Zhu, Y.; Rebelo, A.P.; et al. Biallelic mutations in SORD causes a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat. Genet. 2020, 52, 473–481. https://doi.org/10.1038/s41588-020-0615-4.
  • 49.
    Fridman, V.; Suriyanarayanan, S.; Novak, P.; et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 2019, 92, e359–e370.
  • 50.
    Rind, D.M. The FDA and gene therapy for Duchenne muscular dystrophy. JAMA 2024, 20, 1706.
Share this article:
How to Cite
Angelini, C. Therapeutic Advances and Novel Drug Treatment Opportunities in the Neuromuscular Disorders Area. International Journal of Neuromuscular Diseases 2026, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.