2509001301
  • Open Access
  • Article

Identification of a Reverted DMPK Allele and Analysis of Intergenerational Transmission in a DM1 Pedigree

  • Virginia Veronica Visconti 1,   
  • Paola Bisceglia 2,   
  • Angela De Dominicis 3,   
  • Elena Pegoraro 4,   
  • Corrado Angelini 4,   
  • Federica Sangiuolo 1,   
  • Annalisa Botta 1,   
  • Maria Rosaria D'Apice 5,   
  • Giuseppe Novelli 1, 5, *

Received: 01 Aug 2025 | Revised: 05 Sep 2025 | Accepted: 15 Sep 2025 | Published: 03 Dec 2025

Abstract

Myotonic dystrophy type 1 (DM1) is an autosomal dominant, multisystemic disorder due to an unstable expansion of CTG repetition in the 3′ UTR of the DMPK gene, which increases in length during gametogenesis, causing genetic anticipation. Nevertheless, contraction of the DM1 expanded alleles has been reported in 10% of paternal and at 3% of maternal transmissions, mostly associated with less severe symptoms and a later age of onset. The aim of this study is to investigate the inheritance and meiotic instability of a paternal DMPK expanded allele that contracted into the normal range in an asymptomatic member of a DM1 family. We genetically characterized the DMPK gene in a DM1 family through a combination of SR-PCR, TP-PCR, LR-PCR and linkage analysis. We described a DM1 family with an asymptomatic 40-year-old woman inheriting from the affected father the DMPK repeat contracted in size to a (CTG)30 allele. In prenatal diagnosis requested from the woman, we observed two DMPK alleles within the normal range in foetal DNA, one of them corresponding to the contracted maternal allele, which remained stable in the intergenerational transmission. We demonstrated, for the first time, that a reverted DMPK allele remains stable through maternal meiotic transmission, thus implementing our knowledge about the intergenerational dynamics of the DM1 locus.

References 

  • 1.

    Seifert, B.A.; Reddi, H.V.; Kang, B.E.; et al. Myotonic Dystrophy Type 1 Testing, 2024 Revision: A Technical Standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2024, 26, 101145. https://doi.org/10.1016/J.GIM.2024.101145.

  • 2.

    Savić Pavićević, D.; Miladinović, J.; Brkušanin, M.; et al. Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1. Biomed. Res. Int. 2013, 2013, 391821. https://doi.org/10.1155/2013/391821.

  • 3.

    Ranum, L.P.W.; Day, J.W. Myotonic Dystrophy: RNA Pathogenesis Comes into Focus. Am. J. Hum. Genet. 2004, 74, 793–804. https://doi.org/10.1086/383590.

  • 4.

    Thornton, C.A. Myotonic Dystrophy. Neurol. Clin. 2014, 32, 705. https://doi.org/10.1016/J.NCL.2014.04.011.

  • 5.

    Soltanzadeh, P. Myotonic Dystrophies: A Genetic Overview. Genes 2022, 13, 367. https://doi.org/10.3390/GENES13020367.

  • 6.

    Peric, S.; Pesovic, J.; Savic-Pavicevic, D.; et al. Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2022, 23, 354. https://doi.org/10.3390/IJMS23010354.

  • 7.

    Santoro, M.; Masciullo, M.; Silvestri, G.; et al. Myotonic Dystrophy Type 1: Role of CCG, CTC and CGG Interruptions within DMPK Alleles in the Pathogenesis and Molecular Diagnosis. Clin. Genet. 2017, 92, 355–364. https://doi.org/10.1111/CGE.12954.

  • 8.

    Botta, A.; Rossi, G.; Marcaurelio, M.; et al. Identification and Characterization of 5′ CCG Interruptions in Complex DMPK Expanded Alleles. Eur. J. Hum. Genet. 2017, 25, 257–261. https://doi.org/10.1038/EJHG.2016.148.

  • 9.

    Khajavi, M.; Tari, A.M.; Patel, N.B.; et al. ‘Mitotic Drive’ of Expanded CTG Repeats in Myotonic Dystrophy Type 1 (DM1). Hum. Mol. Genet. 2001, 10, 855–863. https://doi.org/10.1093/HMG/10.8.855.

  • 10.

    Cohen, H.; Sears, D.D.; Zenvirth, D.; et al. Increased Instability of Human CTG Repeat Tracts on Yeast Artificial Chromosomes during Gametogenesis. Mol. Cell. Biol. 1999, 19, 4153. https://doi.org/10.1128/MCB.19.6.4153.

  • 11.

    Yum, K.; Wang, E.T.; Kalsotra, A. Myotonic Dystrophy: Disease Repeat Range, Penetrance, Age of Onset, and Relationship between Repeat Size and Phenotypes. Curr. Opin. Genet. Dev. 2017, 44, 30–37. https://doi.org/10.1016/j.gde.2017.01.007.

  • 12.

    Tomé, S.; Dandelot, E.; Dogan, C.; et al. Unusual Association of a Unique CAG Interruption in 5′ of DM1 CTG Repeats with Intergenerational Contractions and Low Somatic Mosaicism. Hum. Mutat. 2018, 39, 970–982. https://doi.org/10.1002/HUMU.23531.

  • 13.

    Puymirat, J.; Giguère, Y.; Mathieu, J.; et al. Intergenerational Contraction of the CTG Repeats in 2 Families with Myotonic Dystrophy Type 1. Neurology 2009, 73, 2126–2127. https://doi.org/10.1212/WNL.0B013E3181C677E1.

  • 14.

    Ashizawa, T.; Anvret, M.; Baiget, M.; et al. Characteristics of Intergenerational Contractions of the CTG Repeat in Myotonic Dystrophy. Am. J. Hum. Genet. 1994, 54, 414.

  • 15.

    Matsumura, R.; Namikawa, T.; Miki, T.; et al. An Intergenerational Contraction of the CTG Repeat in Japanese Myotonic Dystrophy. J. Neurol. Sci. 1996, 139, 48–51. https://doi.org/10.1016/0022-510X(96)00014-7.

  • 16.

    Shelbourne, P.; Davies, J.; Buxton, J.; et al. Direct Diagnosis of Myotonic Dystrophy with a Disease-Specific DNA Marker. N. Engl. J. Med. 1993, 328, 471–475. https://doi.org/10.1056/NEJM199302183280704.

  • 17.

    Brunner, H.G.; Jansen, G.; Nillesen, W.; et al. Reverse Mutation in Myotonic Dystrophy. N. Engl. J. Med. 1993, 328, 476–480. https://doi.org/10.1056/NEJM199302183280705.

  • 18.

    Han, J.Y.; Jang, W.; Park, J. Intergenerational Influence of Gender and the DM1 Phenotype of the Transmitting Parent in Korean Myotonic Dystrophy Type 1. Genes 2022, 13, 1465. https://doi.org/10.3390/GENES13081465.

  • 19.

    Joosten, I.B.T.; Hellebrekers, D.M.E.I.; de Greef, B.T.A.; et al. Parental Repeat Length Instability in Myotonic Dystrophy Type 1 Pre- and Protomutations. Eur. J. Hum. Genet. 2020, 28, 956. https://doi.org/10.1038/S41431-020-0601-4.

  • 20.

    Martorell, L.; Monckton, D.G.; Gamez, J.; et al. Complex Patterns of Male Germline Instability and Somatic Mosaicism in Myotonic Dystrophy Type 1. Eur. J. Hum. Genet. 2000, 8, 423–430. https://doi.org/10.1038/SJ.EJHG.5200478.

  • 21.

    Wong, L.J.C.; Ashizawa, T.; Monckton, D.G.; et al. Somatic Heterogeneity of the CTG Repeat in Myotonic Dystrophy Is Age and Size Dependent. Am. J. Hum. Genet. 1995, 56, 114.

  • 22.

    Tsilfidis, C.; MacKenzie, A.E.; Mettler, G.; et al. Correlation between CTG Trinucleotide Repeat Length and Frequency of Severe Congenital Myotonic Dystrophy. Nat. Genet. 1992, 1, 192–195. https://doi.org/10.1038/NG0692-192.

  • 23.

    McMurray, C.T. Mechanisms of Trinucleotide Repeat Instability during Human Development. Nat. Rev. Genet. 2010, 11, 786–799. https://doi.org/10.1038/NRG2828.

Share this article:
How to Cite
Visconti, V. V.; Bisceglia, P.; De Dominicis, A.; Pegoraro, E.; Angelini, C.; Sangiuolo, F.; Botta, A.; D’Apice, M. R.; Novelli, G. Identification of a Reverted DMPK Allele and Analysis of Intergenerational Transmission in a DM1 Pedigree. International Journal of Neuromuscular Diseases 2026, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.