2504000004
  • Open Access
  • Survey/Review Study
The Cooperative Output Regulation by the Distributed Observer Approach
  • Youfeng Su 1,   
  • He Cai 2,   
  • Jie Huang 3, *

Received: 04 Nov 2022 | Accepted: 13 Dec 2022 | Published: 22 Dec 2022

Abstract

The cooperative output regulation problem (CORP) is an extension of the leader-following consensus problem of multi-agent systems (MASs), and has been studied by two approaches, namely, the distributed observer (DO) approach and the distributed internal model (DIM) approach. The two approaches are, respectively, the extensions of the classical feedforward control approach and the classical internal model approach (for a single system) to the MASs. This paper overviews the CORP by the DO approach with the emphasis on linear MASs. After formulating the CORP, we present the evolution process of three types of DOs and the corresponding solutions to the CORP. Furthermore, some variants and extensions of the DO approach are also briefly surveyed for completeness.

References 

  • 1.
    Wonham WM (1985) Linear multivariable control: A geometric approach, a geometric approach, 3rd edn. Springer, New York. Available online:https://link.springer.com/book/10.1007/978-1-4684-0068-7(accessed on 11 November 2022)
  • 2.
    Knoblich HW, Isidori A, Flokerzi D (1993) Topics in control theory. Birkhauser, Boston. Available online:https://link.springer.com/book/10.1007/978-3-0348-8566-9(accessed on 11 November 2022)
  • 3.
    Huang J (2004) Nonlinear output regulation: theory and applications. SIAM, Philadelphia. Available online:https://epubs.siam.org/doi/book/10.1137/1.9780898718683?mobileUi=0(accessed on 11 November 2022)
  • 4.
    Johnson CD, Accommodation of external disturbances in linear regulator and servomechanism problem. IEEE Trans Autom Control, 1971, 16(6): 535−544.
  • 5.
    Smith HW, Davison EJ, Design of industrial regulators: integral feedback and feedforward control. Proc IEEE, 1972, 199(8): 1210−1216.
  • 6.
    Cheng L, Pearson JB, Frequency-domain synthesis of multivariable linear regulators. IEEE Trans Autom Control, 1978, 23(1): 3−15.
  • 7.
    Davison EJ, The output control of linear time-invariant multivariable systems with unmeasurable arbitrary disturbance. IEEE Trans Autom Control, 1972, 17(5): 621−630.
  • 8.
    Davison EJ, A generalization of the output control of linear time-invariant multivariable systems with unmeasurable arbitrary disturbances. IEEE Trans Autom Control, 1975, 20(6): 788−792.
  • 9.
    Davison EJ, The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans Autom Control, 1976, 21(1): 25−34.
  • 10.
    Francis BA, Wonham WM, The internal model principle of control theory. Automatica, 1976, 12(5): 457−465.
  • 11.
    Francis BA, The linear multivariable regulator problem. SIAM J Control Optim, 1977, 15(3): 486−505.
  • 12.
    Wonham WM, Pearson JB, Regulation and internal stabilization in linear multivariable systems. SIAM J Control Optim, 1974, 12(1): 5−18.
  • 13.
    Ogren P, Egerstedt M, Hu X, A control Lyapunov function approach to multiagent coordination. IEEE Trans Robot Autom, 2002, 18(5): 847−851.
  • 14.
    Fax JA, Murray RM, Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control, 2004, 49(9): 1465−1476.
  • 15.
    Jadbabaie A, Lin J, Morse AS, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control, 2003, 48(6): 988−1001.
  • 16.
    Olfati-Saber R, Murray RM, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control, 2004, 49(9): 1520−1533.
  • 17.
    Lin Z (2005) Coupled dynamic systems: from structure towards stability and stabilizability, PhD dissertation, University of Toronto, Toronto, Canada. Available online:https://www.semanticscholar.org/paper/Coupled-Dynamic-Systems%3A-From-Structure-Towards-Lin-Francis/6af6b4a0b4140704b008d78ba37fba93501caee0(accessed on 11 November 2022)
  • 18.
    Moreau L (2004) Stability of continuous-time distributed consensus algorithms. In: Proceedings of the 41st IEEE conference on decision and control, pp 3998–4003. Available online: https://ieeexplore.ieee.org/document/1429377(accessed on 11 November 2022)
  • 19.
    Ren W, Beard RW, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control, 2005, 50(5): 655−661.
  • 20.
    Hu J, Hong Y, Leader-following coordination of multi-agent systems with coupling time delays. Phys A Stat Mech Appl, 2007, 374(2): 853−863.
  • 21.
    Ren W, Synchronization of coupled harmonic oscillators with local interaction. Automatica, 2008, 44(2): 3195−3200.
  • 22.
    Tuna SE (2008) LQR-based coupling gain for synchronization of linear systems. arxiv.org/abs/0801.3390
  • 23.
    Song Q, Cao J, Yu W, Second-order leader-following consensus of nonlinear multiagents via pinning control. Syst Control Lett, 2010, 59(9): 553−562.
  • 24.
    Nuño E, Ortega R, Basañez L, Hill D, Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays. IEEE Trans Autom Control, 2011, 56(4): 935−941.
  • 25.
    Bai H, Arcak M, Wen JT, Rigid body attitude coordination without inertial frame information. Automatica, 2008, 44(12): 3170−3175.
  • 26.
    Su Y, Huang J, Cooperative output regulation of linear multi-agent systems. IEEE Trans Autom Control, 2012, 57(4): 1062−1066.
  • 27.
    Su Y, Huang J, Cooperative output regulation with application to multi-agent consensus under switching network. IEEE Trans Syst Man Cybern Part B Cybern, 2012, 42(3): 864−875.
  • 28.
    Su Y, Huang J, Cooperative output regulation of linear multi-agent systems by output feedback. Syst Control Lett, 2012, 61(12): 1248−1253.
  • 29.
    Huang J, Certainty equivalence, separation principle, and cooperative output regulation of multi-agent systems by the distributed observer approach. Control Complex Syst: Theory and Appl, 2016, 14: 421−449.
  • 30.
    Cai H, Huang J, The leader-following consensus for multiple uncertain Euler-Lagrange systems with an adaptive distributed observer. IEEE Trans Autom Control, 2016, 61(10): 3152−3157.
  • 31.
    Cai H, Lewis FL, Hu G, Huang J, The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75: 299−305.
  • 32.
    Modares H, Nageshrao SP, Lopes GAD, Babuska R, Lewis FL, Optimal model-free output synchronization of heterogeneous systems using off-policy reinforcement learning. Automatica, 2016, 71: 334−341.
  • 33.
    Wang S, Huang J, Adaptive leader-following consensus for multiple Euler-Lagrange systems with an uncertain leader system. IEEE Trans Neural Netw Learn Syst, 2019, 30(7): 2188−2196.
  • 34.
    Wang S, Huang J, Cooperative output regulation of linear multi-agent systems subject to an uncertain leader system. Int J Control, 2019, 94(4): 952−960.
  • 35.
    Grip HF, Saberi A, Stoorvogel AA, Synchronization in networks of minimum-phase, non-introspective agents without exchange of controller states: homogeneous, heterogeneous, and nonlinear. Automatica, 2015, 54: 246−255.
  • 36.
    Meng Z, Yang T, Dimarogonasa DV, Johansson KH, Coordinated output regulation of heterogeneous linear systems under switching topologies. Automatica, 2015, 53: 362−368.
  • 37.
    Yaghmaie FA, Lewis FL, Su R, Output regulation of linear heterogeneous multi-agent systems via output and state feedback. Automatica, 2016, 67: 157−164.
  • 38.
    Seyboth GS, Ren W, Allgöwer F, Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization. Automatica, 2016, 68: 132−139.
  • 39.
    Yan F, Gu G, Chen X, A new approach to cooperative output regulation for heterogeneous multi-agent systems. SIAM J Control Optim, 2018, 56(3): 2074−2094.
  • 40.
    Li X, Soh YC, Xie L, Lewis FL, Cooperative output regulation of heterogeneous linear multi-agent networks via H∞ performance allocation. IEEE Trans Autom Control, 2019, 64(2): 683−696.
  • 41.
    Cai H, Su Y, Huang J (2022) Cooperative control of multi-agent systems: distributed-observer and internal-model-approaches. Springer Nature Switzerland AG, Switzerland
  • 42.
    Su Y, Huang J, Stability of a class of linear switching systems with applications to two consensus problems. IEEE Trans Autom Control, 2012, 57(6): 1420−1430.
  • 43.
    Lee TC, Tan Y, Mareels I, Analyzing the stability of switched systems using common zeroing-output systems. IEEE Trans Autom Control, 2017, 62(10): 5138−5153.
  • 44.
    Su Y, Lee TC, Output feedback synthesis of multi-agent systems with jointly connected switching networks: a separation principle approach. IEEE Trans Autom Control, 2022, 67(2): 941−948.
  • 45.
    Liu T, Huang J, An output-based distributed observer and its application to the cooperative linear output regulation problem. Control Theory Technology, 2019, 17(1): 62−72.
  • 46.
    Abdessameud A, Tayebi A, Distributed output regulation of heterogeneous linear multi-agent systems with communication constraints. Automatica, 2018, 91: 152−158.
  • 47.
    Zuo Z, Defoort M, Tian B, Ding Z, Distributed consensus observer for multiagent systems with high-order integrator dynamics. IEEE Trans Autom Control, 2020, 65(4): 1771−1778.
  • 48.
    Hua Y, Dong X, Hu G, Li Q, Ren Z, Distributed time-varying output formation tracking for heterogeneous linear multiagent systems with a nonautonomous leader of unknown input. IEEE Trans Autom Control, 2019, 64(10): 4292−4299.
  • 49.
    Li Z, Chen MZQ, Ding Z, Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs. Automatica, 2016, 68: 179−183.
  • 50.
    Dong Y, Chen J, Huang J, A self-tuning adaptive distributed observer approach to the cooperative output regulation problem for networked multi-agent systems. Int J Control, 2019, 92(8): 1796−1804.
  • 51.
    Schmid R, Aghbolagh HD, Nonovershooting cooperative output regulation of linear multiagent systems by dynamic output feedback. IEEE Trans Control Netw Syst, 2019, 6(2): 526−536.
  • 52.
    Liu W, Huang J, Adaptive leader-following consensus for a class of higher-order nonlinear multi-agent systems with directed switching networks. Automatica, 2017, 79: 84−92.
  • 53.
    Liu T, Huang J, Leader-following consensus with disturbance rejection for uncertain Euler-Lagrange systems over switching networks. Int J Robust Nonlinear Control, 2019, 29(18): 6638−6656.
  • 54.
    Cai H, Huang J, Output based adaptive distributed output observer for leader–follower multiagent systems. Automatica, 2021, 125: 109413.
  • 55.
    Dong Y, Xu S, Hu X, Coordinated control with multiple dynamic leaders for uncertain Lagrangian systems via self-tuning adaptive distributed observer. Int J Robust Nonlinear Control, 2017, 27(16): 2708−2721.
  • 56.
    Wang S, Huang J, Adaptive distributed observer for an uncertain leader with an unknown output over directed acyclic graphs. Int J Control., 2022, 94(12): 3424−3432.
  • 57.
    He C, Huang J, Adaptive distributed observer for an uncertain leader over acyclic switching digraphs. Int J Robust Nonlinear Control, 2022, 32(2): 873−899.
  • 58.
    Wu Y, Lu R, Shi P, Su H, Wu ZG, Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica, 2017, 76: 183−192.
  • 59.
    Wang S, Meng X, Adaptive consensus and parameter estimation of multiagent systems with an uncertain leader. IEEE Trans Autom Control, 2021, 66(9): 4393−4400.
  • 60.
    Huang J, The cooperative output regulation problem of discrete-time linear multi-agent systems by the adaptive distributed observer. IEEE Trans Autom Control, 2017, 62(4): 1979−1984.
  • 61.
    Liu T, Huang J, Adaptive cooperative output regulation of discrete-time linear multiagent systems by a distributed feedback control law. IEEE Trans Autom Control, 2018, 63(12): 4383−4390.
  • 62.
    Liu T, Huang J, Discrete-time distributed observers over jointly connected switching networks and an application. IEEE Trans Autom Control, 2021, 66(4): 1918−1924.
  • 63.
    Su Y, Huang J, Two consensus problems for discrete-time multi-agent systems with switching network topology. Automatica, 2012, 48(9): 1988−1997.
  • 64.
    Huang J, Leader-following consensus for a class of discrete-time multi-agent systems under directed switching networks. IEEE Trans on Autom Control, 2017, 62(8): 4086−4092.
  • 65.
    Lee TC, Xia W, Su Y, Huang J, Exponential consensus of discrete-time systems based on a novel Krasovskii–LaSalle theorem under directed switching networks. Automatica, 2018, 97: 189−199.
  • 66.
    Lu M, Huang J, Cooperative output regulation problem for linear time-delay multi-agent systems under switching network. Neurocomputing, 2016, 190: 132−139.
  • 67.
    Yan Y, Huang J, Cooperative output regulation of discrete-time linear time-delay multiagent systems. IET Control Theory Appl, 2016, 10(16): 2019−2026.
  • 68.
    Yan Y, Huang J, Cooperative output regulation of discrete-time linear time-delay multiagent systems under switching network. Neurocomputing, 2017, 241: 108−114.
  • 69.
    Yang J, Yu H, Chen T, Cooperative output regulation with asynchronous transmissions and time-varying delays. IEEE Trans Autom Control, 2022, 67(3): 1438−1445.
  • 70.
    Luo S, Xu X, Liu L, Feng G (online) Leader-following consensus of heterogeneous linear multiagent systems with communication time-delays via adaptive distributed observers. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3115124
  • 71.
    Ma Q, Xu S, Lewis FL, Cooperative output regulation of singular heterogeneous multiagent systems. IEEE Trans Cybern, 2016, 46(6): 1471−1475.
  • 72.
    Wang S, Huang J, Cooperative output regulation of singular multi-agent systems under switching network by standard reduction. IEEE Trans Circuits Syst I-Regul Papers, 2018, 65(4): 1377−1385.
  • 73.
    Liu X, Xie Y, Li F, Gui W, Cooperative output regulation of singular multi-agent systems under adaptive distributed protocol and general entirety method. Syst Control Lett, 2022, 138: 1−10.
  • 74.
    Xue M, Tang Y, Ren W, Qian F, Practical output synchronization for asynchronously switched multi-agent systems with adaption to fast-switching perturbations. Automatica, 2020, 116: 1−12.
  • 75.
    Ma Y, Zhao J, Distributed adaptive integral-type event-triggered cooperative output regulation of switched multiagent systems by agent-dependent switching with dwell time. Int J Robust Nonlinear Control, 2020, 30: 2550−2569.
  • 76.
    Deutscher J, Cooperative output regulation for a network of parabolic systems with varying parameters. Automatica, 2021, 125: 109446.
  • 77.
    Deutscher J, Robust cooperative output regulation for a network of parabolic PDE systems. IEEE Trans Autom Control, 2022, 67(1): 451−459.
  • 78.
    Liang H, Zhou Y, Ma H, Zhou Q, Adaptive distributed observer approach for cooperative containment control of nonidentical networks. IEEE Trans Syst Man Cybern: Syst, 2019, 49(2): 299−307.
  • 79.
    Haghshenas H, Badamchizadeh MA, Baradarannia M, Containment control of heterogeneous linear multi-agent systems. Automatica, 2015, 54: 210−216.
  • 80.
    Lui DG, Petrillo A, Santini S, An optimal distributed PID-like control for the output containment and leader-following of heterogeneous high-order multi-agent systems. Inf Sci, 2020, 541: 166−184.
  • 81.
    Wang Q, Dong X, Wen G, Lv J, Ren Z (online) Practical output containment of heterogeneous nonlinear multiagent systems under external disturbances. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2022.3175769
  • 82.
    Zhou P and Chen BM, Formation-containment control of Euler–Lagrange systems of leaders with bounded unknown inputs. IEEE Trans Cybern., 2022, 52(7): 6342−6353.
  • 83.
    Kim H, Shim H, Seo JH, Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans Autom Control, 2011, 56(1): 200−206.
  • 84.
    Wieland P, Sepulchre R, Allgöwer F, An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 2011, 47(5): 1068−1074.
  • 85.
    Zhu L, Chen Z, Middleton RH, A general framework for robust output synchronization of heterogeneous nonlinear networked systems. IEEE Trans Autom Control, 2016, 61(8): 2092−2107.
  • 86.
    Shi L, Li Y, Lin Z, Semi-global leader-following output consensus of heterogeneous multi-agent systems with input saturation. Int J Robust Nonlinear Control, 2018, 28: 4916−4930.
  • 87.
    Zhou P, Chen BM, Semi-global leader-following output consensus of heterogeneous systems with all agents subject to input saturation. Int J Robust Nonlinear Control, 2022, 32: 4648−664.
  • 88.
    Ma J, Yu X, Liu L, Ji HB, Feng G, Global cooperative output regulation of linear multiagent systems with limited bandwidth. IEEE Trans Control Netw Syst, 2022, 9(2): 1017−1028.
  • 89.
    Song G, Song P, Lim CP, Distributed fault-tolerant cooperative output regulation for multiagent networks via fixed-time observer and adaptive control. IEEE Trans Control Netw Syst, 2022, 9(2): 845−855.
  • 90.
    Baldi S, Azzollini IA, Ioannou PA, A distributed indirect adaptive approach to cooperative tracking in networks of uncertain single-input single-output systems. IEEE Trans Autom Control, 2021, 66(10): 4844−4851.
  • 91.
    Yaghmaie FA, Movric KH, Lewis FL, Su R, Sebek M, H∞-output regulation of linear heterogeneous multiagent systems over switching graphs. Int J Robust Nonlinear Control, 2018, 28: 3852−3870.
  • 92.
    Cai H, Huang J, Leader-following consensus of multiple uncertain Euler-Lagrange systems under switching network topology. Int J Gen Syst, 2014, 43(3-4): 294−304.
  • 93.
    Lu M, Liu L, Leader-following consensus for multiple uncertain Euler-Lagrange systems with unknown dynamic leader. IEEE Trans Autom Control., 2019, 64(10): 4167−4173.
  • 94.
    Lu M, Liu L, Leader-following consensus of multiple uncertain Euler-Lagrange systems subject to communication delays and switching networks. IEEE Trans Autom Control., 2018, 63(8): 2604−2611.
  • 95.
    Lu M, Liu L, Robust synchronization control of switched networked Euler-Lagrange systems. IEEE Trans Cybern, 2022, 52(7): 6834−6842.
  • 96.
    Feng Z, Hu G, Ren W, Dixon W, Mei J, Distributed coordination of multiple unknown Euler-Lagrange systems. IEEE Trans Control Netw Syst, 2018, 5(1): 55−66.
  • 97.
    Wang T, Huang J (2021) Leader-following consensus of multiple uncertain Euler-Lagrange systems subject to unknown disturbances over switching networks. In: Proceedings of the 40th Chinese control conference
  • 98.
    Cai H, Huang J, The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 2014, 50: 1109−1115.
  • 99.
    Cai H, Huang J, Leader-following attitude consensus of multiple rigid body systems by attitude feedback control. Automatica, 2016, 69: 87−92.
  • 100.
    Cai H, Huang J, Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems. Sci China Inf Sci, 2016, 59: 1−13.
  • 101.
    Liu T, Huang J, Leader-following attitude consensus of multiple rigid body systems subject to jointly connected switching networks. Automatica, 2018, 92: 63−71.
  • 102.
    Wang T, Huang J, Leader-following adaptive consensus of multiple uncertain rigid body systems over jointly connected networks. Unmanned Syst, 2020, 8(2): 85−93.
  • 103.
    Wang T, Huang J, Consensus of multiple spacecraft systems over switching networks by attitude feedback. IEEE Trans Aerosp Electron Syst, 2020, 56(3): 2018.
  • 104.
    Lu M, Liu L, Leader-following attitude consensus of multiple rigid spacecraft systems under switching networks. IEEE Trans Autom Control., 2020, 65(2): 839−845.
  • 105.
    Wang T, Huang J, Time-varying formation control with attitude synchronization of multiple rigid body systems. Int J Robust Nonlinear Control, 2022, 32(1): 181−204.
  • 106.
    Dong Y, J. Huang, Leader-following rendezvous with connectivity preservation of a class of multi-agent systems. Automatica, 2013, 49: 1386−1391.
  • 107.
    Dong Y, J, Huang. Flocking with connectivity preservation of multiple double integrator systems subject to external disturbances by a distributed control law. Automatica, 2015, 55: 197−203.
  • 108.
    Liu W, Huang J, Sampled-data cooperative output regulation of linear multi-agent systems. Int J Robust Nonlinear Control, 2021, 31(10): 4805−4822.
  • 109.
    Zheng S, Shi P, Agarwal RK, Lim CP, Periodic event-triggered output regulation for linear multi-agent systems. Automatica, 2020, 122: 109223.
  • 110.
    Liu W, Huang J, Event-triggered global robust output regulation for a class of nonlinear Systems. IEEE Trans Autom Control, 2017, 27(11): 5923−5930.
  • 111.
    Liu W, Huang J, Event-triggered cooperative robust practical output regulation for a class of linear multi-agent systems. Automatica, 2017, 85: 158−164.
  • 112.
    Liu W, Huang J, Robust practical output regulation for a class of uncertain linear minimum-phase systems by output-based event-triggered control. Int J Robust Nonlinear Control, 2017, 27(18): 4574−4590.
  • 113.
    Liu W, Huang J, Cooperative global robust output regulation for a class of nonlinear multi-agent systems by distributed event-triggered control. Automatica, 2018, 93: 138−148.
  • 114.
    Liu W, Huang J, Event-triggered cooperative global robust practical output regulation for second-order uncertain nonlinear multi-agent. IEEE Trans Neural Netw Learn Syst, 2018, 29(11): 5486−5498.
  • 115.
    Liu W, Huang J, Global robust practical output regulation for nonlinear systems in output feedback form by output-based event-triggered control. Int J Robust Nonlinear Control, 2019, 29(6): 2007−2025.
  • 116.
    Su Y, Xu L, Wang X, Xu D, Event-based cooperative global practical output regulation of multi-agent systems with nonlinear leader. Automatica, 2019, 107: 600−604.
  • 117.
    Liang D, Huang J, Robust output regulation of linear systems by event-triggered dynamic output feedback control. IEEE Trans Autom Control, 2021, 66(5): 2415−2422.
  • 118.
    Qian Y, Liu L, Feng G, Cooperative output regulation of linear multiagent systems: an event-triggered adaptive distributed observer approach. IEEE Trans Autom Control, 2021, 66(2): 833−840.
  • 119.
    Cheng B, Li Z, Wang X, Cooperative output regulation of heterogeneous multi-agent systems with adaptive edge-event-triggered strategies. IEEE Trans Circuits Syst Ⅱ Express Briefs, 2020, 67(10): 2199−2203.
  • 120.
    Deng C, Wen C, Huang J, Zhang X, Zou Y, Distributed observer-based cooperative control approach for uncertain nonlinear MASs under event-triggered communication. IEEE Trans Autom Control, 2022, 67(5): 2669−2676.
  • 121.
    Zhang H, Chen J, Wang Z, Fu C, Song S, Distributed event-triggered control for cooperative output regulation of multiagent systems with an online estimation algorithm. IEEE Trans Cybern, 2022, 52(3): 1911−1923.
  • 122.
    Gao W, Jiang Z, Learning-based adaptive optimal output regulation of linear and nonlinear systems: an overview. Control Theory Technol, 2022, 20: 1−9.
  • 123.
    Kiumarsi B, Lewis FL, Output synchronization of heterogeneous discrete-time systems: A model-free optimal approach. Automatica, 2017, 84: 86−94.
  • 124.
    Modares H, Lewis FL, Kang W, Davoudi A, Optimal synchronization of heterogeneous nonlinear systems with unknown dynamics. IEEE Trans Autom Control, 2018, 63(1): 117−131.
  • 125.
    Gao W, Jiang Z, Lewis FL, Wang Y, Leader-to-formation stability of multi-agent systems: An adaptive optimal control approach. IEEE Trans Autom Control, 2018, 63(10): 3581−3587.
  • 126.
    Jiang Y, Fan J, Gao W, Chai T, Lewis, F L, Cooperative adaptive optimal output regulation of nonlinear discrete-time multi-agent systems. Automatica, 2020, 121: 109149.
  • 127.
    Chen C, Frank L, Xie K, Xie S, Liu Y, Off-policy learning for adaptive optimal output synchronization of heterogeneous multi-agent systems. Automatica, 2020, 119: 109081.
  • 128.
    Yang Y, Modares H, Wunsch DC, Yin Y, Leader-follower output synchronization of linear heterogeneous systems with active leader using reinforcement learning. IEEE Trans Neural Netw Learn Syst, 2018, 29(6): 2139−2153.
  • 129.
    Gao W, Mynuddin M, Wunsch DC, Jiang ZP (online) Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3069728
  • 130.
    Deng C, Wen C, Distributed resilient observer-based fault-tolerant control for heterogeneous multiagent systems under actuator faults and DoS attacks. IEEE Trans Control Netw Syst, 2020, 7(3): 1308−1318.
  • 131.
    Feng Z, Hu G, Secure cooperative event-triggered control of linear multiagent systems under DoS attacks. IEEE Trans Control Syst Technol, 2020, 28(3): 741−752.
  • 132.
    Xu Y, Fang M, Pan YJ, Shi K, Wu ZG, Event-triggered output synchronization for nonhomogeneous agent systems with periodic denial-of-service attacks. Int J Robust Nonlinear Control, 2021, 31(6): 1851−1865.
  • 133.
    Yan J, Deng C, Wen C, Resilient output regulation in heterogeneous networked systems under Byzantine agents. Automatica, 2021, 133: 109872.
  • 134.
    Deng C, Wen C, MAS-based distributed resilient control for a class of cyber-physical systems with communication delays under DoS attacks. IEEE Trans Cybern, 2021, 51(5): 2147−2358.
  • 135.
    Deng C, Zhang D, Feng G, Resilient practical cooperative output regulation for MASs with unknown switching exosystem dynamics under DoS attacks. Automatica, 2022, 139: 110172.
  • 136.
    Zhang D, Deng C, Feng G (online) Resilient cooperative output regulation for nonlinear multi-agent systems under DoS attacks. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.2022.3184388
  • 137.
    Du S, Xu W, Qiao J, Daniel WC (online) Resilient output synchronization of heterogeneous multiagent systems with DoS attacks under distributed event-/self-triggered control. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3105006
  • 138.
    Liu XK, Zhang JF, Wang J, Differentially private consensus algorithm for continuous-time heterogeneous multi-agent systems. Automatica, 2020, 122: 109283.
  • 139.
    Wang X, Hong Y, Huang J, Jiang ZP, A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans Autom Control, 2010, 55(12): 2891−2895.
  • 140.
    Su Y, Hong Y, Huang J, A general result on the robust cooperative output regulation for linear uncertain multi-agent systems. IEEE Trans Autom Control, 2013, 58(5): 1275−1279.
  • 141.
    Huang C, Ye X, Cooperative output regulation of heterogeneous multi-agent systems: an H∞ criterion. IEEE Trans Autom Control, 2013, 59(1): 267−273.
  • 142.
    Koru AT, Sarsilmaz SB, Yucelen T, Johnson EN, Cooperative output regulation of heterogeneous multiagent systems: a global distributed control synthesis approach. IEEE Trans Autom Control, 2021, 66(9): 4289−4296.
  • 143.
    Su Y, Huang J, Cooperative robust output regulation of a class of heterogeneous linear uncertain multi-agent systems. Int J Robust Nonlinear Control, 2014, 24(17): 2819−2839.
  • 144.
    Hong Y, Wang X, Jiang Z, Distributed output regulation of leader-follower multi-agent systems. Int J Robust Nonlinear Control, 2013, 23(1): 48−66.
  • 145.
    Zhang Y, Su Y, Wang X, Distributed adaptive output feedback control for multi-agent systems with unknown dynamics. IEEE Trans Autom Control, 2021, 66(3): 1367−1374.
  • 146.
    Zhang Y, Su Y, Cooperative output regulation for linear uncertain MIMO multi-agent systems by output feedback. Sci China Inf Sci, 2018, 61(9): 092206.
  • 147.
    Dong Y, Huang J, Cooperative global robust output regulation for nonlinear multi-agent systems in output feedback form. J Dyn Syst Meas Control-Trans ASME, 2014, 136(3): 031001.
  • 148.
    Dong Y, Huang J, Cooperative global output regulation for a class of nonlinear multiagent systems. IEEE Trans Autom Control, 2014, 59(5): 1348−354.
  • 149.
    Su Y, Huang J, Cooperative global output regulation for nonlinear uncertain multi-agent systems in lower triangular form. IEEE Trans Autom Control, 2015, 60(9): 2378−2389.
  • 150.
    Su Y, Huang J, Cooperative global output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader. Syst Control Lett, 2013, 62(6): 461−467.
  • 151.
    Wang X, Su Y, Xu D, Nonlinear output-feedback tracking in multiagent systems with an unknown leader and directed communication. Sci China Inf Sci, 2021, 64: 222202.
  • 152.
    Ding Z, Consensus output regulation of a class of heterogeneous nonlinear systems. IEEE Trans Autom Control, 2013, 58(10): 2648−2653.
  • 153.
    Isidori A, Marconi L, Casadei G, Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory. IEEE Trans Autom Control, 2014, 59(10): 2680−2691.
  • 154.
    Priscoli FD, Isidori A, Marconi L, Pietrabissa A, Leader-following coordination of nonlinear agents under time-varying communication topologies. IEEE Trans Control Netw Syst, 2015, 2(4): 393−405.
  • 155.
    Wang L, Wen C, Guo F, Cai H, Su H, Robust cooperative output regulation of uncertain linear multi-agent systems not detectable by regulated output. Automatica, 2019, 101: 309−317.
  • 156.
    Kawamura S, Cai K, Kishida M, Distributed output regulation of heterogeneous uncertain linear agents. Automatica, 2020, 119: 109094.
  • 157.
    Basu H, Yoon SY, Robust cooperative output regulation under exosystem detectability constraint. Int J Control, 2018, 93(5): 1102−1114.
  • 158.
    Wang L, Wen CY, Liu ZT, Su HY, Cai JP, Robust cooperative output regulation of heterogeneous uncertain linear multiagent systems with time-varying communication topologies. IEEE Trans Autom Control, 2020, 65(10): 4340.
  • 159.
    Bi C, Xu X, Liu L, Feng G, Robust cooperative output regulation of heterogeneous uncertain linear multiagent systems with unbounded distributed transmission delays. IEEE Trans Autom Control, 2022, 67(3): 1371−1383.
  • 160.
    Li R, Leader-following output synchronization for a class of uncertain nonlinear multi-agent systems under uniformly connected network. Asian J. Control, 2016, 18(1): 1−11.
  • 161.
    Liu W, Huang J, Cooperative global robust output regulation for nonlinear output feedback multi-agent systems under directed switching networks. IEEE Trans Autom Control, 2017, 62(12): 6339−6352.
  • 162.
    Liu T, Huang J, Cooperative robust output regulation for a class of nonlinear multi-agent systems subject to a nonlinear leader system. Automatica, 2019, 108: 108501.
Share this article:
How to Cite
Su, Y.; Cai, H.; Huang, J. The Cooperative Output Regulation by the Distributed Observer Approach. International Journal of Network Dynamics and Intelligence 2022, 1 (1), 20–35. https://doi.org/10.53941/ijndi0101003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.