- 1.
Martinez, S.D.; Malagon, I.B.; Garewal, H.S.; et al. Non-erosive reflux disease (NERD) - acid reflux and symptom patterns. Aliment. Pharmacol. Ther., 2003, 17: 537−545.
- 2.
Narayani, R.I.; Burton, M.P.; Young, G.S. Utility of esophageal biopsy in the diagnosis of nonerosive reflux disease. Dis. Esophagus, 2003, 16: 187−192.
- 3.
Modlin, I.M.; Hunt, R.H.; Malfertheiner, P.; et al. Diagnosis and management of non-erosive reflux disease - the vevey NERD consensus group. Digestion, 2009, 80: 74−88.
- 4.
Chen, C.L.; Hsu, P.I. Current advances in the diagnosis and treatment of nonerosive reflux disease. Gastroenterol. Res. Pract., 2013, 2013: 653989.
- 5.
Khan, M.Q.; Alaraj, A.; Alsohaibani, F.; et al. Diagnostic utility of impedance-pH monitoring in refractory non-erosive reflux disease. J. Neurogastroenterol. Motil., 2014, 20: 497−505.
- 6.
Barrett, C.; Choksi, Y.; Vaezi, M.F. Mucosal impedance: A new approach to diagnosing gastroesophageal reflux disease and eosinophilic esophagitis. Curr. Gastroenterol. Rep., 2018, 20: 33.
- 7.
Liao, J.K.; Lam, H.K.; Jia, G.; et al. A case study on computer-aided diagnosis of nonerosive reflux disease using deep learning techniques. Neurocomputing, 2021, 445: 149−166.
- 8.
Huang, C.R.; Chen, Y.T.; Chen, W.Y.; et al. Gastroesophageal reflux disease diagnosis using hierarchical heterogeneous descriptor fusion support vector machine. IEEE Trans. Biomed. Eng., 2016, 63: 588−599.
- 9.
Fass, R.; Fennerty, B.M.; Vakil, N. Nonerosive reflux disease - current concepts and dilemmas. Am. J. Gastroenterol., 2001, 96: 303−314.
- 10.
Fass, R. Erosive esophagitis and nonerosive reflux disease (NERD): Comparison of epidemiologic, physiologic, and therapeutic characteristics. J. Clin. Gastroenterol., 2007, 41: 131−137.
- 11.
Chen, T.; Kornblith, S.; Norouzi, M.; et al. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, 13–18 July 2020; JMLR.org, 2020; pp. 1597–1607.
- 12.
Chen, T.; Kornblith, S.; Swersky, K.; et al. Big self-supervised models are strong semi-supervised learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 6–12 December 2020; Curran Associates Inc.: Red Hook, 2020; pp. 22243–22255.
- 13.
He, K.M.; Fan, H.Q.; Wu, Y.X.; et al. Momentum contrast for unsupervised visual representation learning. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 9726–9735. doi: 10.1109/CVPR42600.2020.00975
- 14.
Chen, X.L.; Fan, H.Q.; Girshick, R.; et al. Improved baselines with momentum contrastive learning. arXiv: 2003.04297, 2020. doi: 10.48550/arXiv.2003.04297
- 15.
Chen, X.L.; Xie, S.N.; He, K.M. An empirical study of training self-supervised vision transformers. In Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 10–17 October 2021; IEEE: New York, 2021; pp. 9620–9629. doi: 10.1109/ICCV48922.2021.00950
- 16.
Grill, J.B.; Strub, F.; Altché, F.; et al. Bootstrap your own latent a new approach to self-supervised learning. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 6–12 December 2020; Curran Associates Inc.: Red Hook, 2020; pp. 21271–21284.
- 17.
Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; JMLR.org, 2015; pp. 448–456.
- 18.
Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; Omnipress, 2010; pp. 807–814.
- 19.
Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; et al. Continuous control with deep reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations, San Juan, USA, 2–4 May 2016; ICLR: Ithaca, 2015. doi: 10.48550/arXiv.1509.02971
- 20.
Tian, Y.D.; Yu, L.T.; Chen, X.L.; et al. Understanding self-supervised learning with dual deep networks. arXiv: 2010.00578v1, 2020. doi: 10.48550/arXiv.2010.00578
- 21.
Richemond, P.H.; Grill, J.B.; Altché, F.; et al. BYOL works even without batch statistics. arXiv: 2010.10241, 2020. doi: 10.48550/arXiv.2010.10241
- 22.
Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 2010, 22: 1345−1359.
- 23.
Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; Olivas, E.S; Guerrero, J.D.M.; Martinez-Sober, M.; et al., Eds.; IGI Global: Hershey, 2010; pp. 242–264. doi: 10.4018/978-1-60566-766-9.ch011
- 24.
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; et al. Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 4–9 February 2017; AAAI: Palo Alto, 2017; pp. 4278–4284.
- 25.
Deng, J.; Dong, W.; Socher, R.; et al. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 20–25 June 2009; IEEE: New York, 2009; pp. 248–255. doi: 10.1109/CVPR.2009.5206848
- 26.
Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 11–13 April 2011; PMLR, 2011; pp. 215–223.
- 27.
Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med., 1978, 8: 283−298.