- 1.
Hodge, R.A.; Ericsson, M.; Löf, O.; et al. The global mining industry: Corporate profile, complexity, and change. Miner. Econ., 2022, 35: 587−606.
- 2.
Addison, T.; Roe, A. Extractives for development. Extr. Ind., 2018, 3.
- 3.
Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur., 2017, 6: 61−77.
- 4.
Humphreys, D. The mining industry after the boom. Miner. Econ., 2019, 32: 145−151.
- 5.
Domingues, M.S.Q.; Baptista, A.L.F.; Diogo, M.T. Engineering complex systems applied to risk management in the mining industry. Int. J. Min. Sci. Technol., 2017, 27: 611−616.
- 6.
Wang, J.M.; Bi, L.; Wang, L.G.; et al. A mining technology collaboration platform theory and its product development and application to support China’s digital mine construction. Appl. Sci., 2019, 9: 5373.
- 7.
Wu, Q.; Xu, H. Three-dimensional geological modeling and its application in digital mine. Sci. China Earth Sci., 2014, 57: 491−502.
- 8.
Temkin, I.; Myaskov, A.; Deryabin, S.; et al. Design of a digital 3D model of transport-technological environment of open-pit mines based on the common use of telemetric and geospatial information. Sensors, 2021, 21: 6277.
- 9.
Cudjoe, M.N.M.; Cawood, F.T. The tracking of metal content on a surface mine: A digital mining technology approach. Res. Policy, 2022, 76: 102571.
- 10.
Zhang, L.J.; Xia, X.H. An integer programming approach for truck-shovel dispatching problem in open-pit mines. Energy Procedia, 2015, 75: 1779−1784.
- 11.
Chaowasakoo, P.; Seppälä, H.; Koivo, H.; et al. Improving fleet management in mines: The benefit of heterogeneous match factor. Eur. J. Oper. Res., 2017, 261: 1052−1065.
- 12.
Zhang, Y.H.; Zhao, Z.Y.; Bi, L.; et al. Determination of truck-shovel configuration of open-pit mine: A simulation method based on mathematical model. Sustainability, 2022, 14: 12338.
- 13.
Zhang, S.; Lu, C.W.; Jiang, S.; et al. An unmanned intelligent transportation scheduling system for open-pit mine vehicles based on 5G and big data. IEEE Access, 2020, 8: 135524−135539.
- 14.
Eskandari, H.; Darabi, H.; Hosseinzadeh, S.A. Simulation and optimization of haulage system of an open-pit mine. In Proceedings of 2013 Summer Computer Simulation Conference, Toronto, Ontario, Canada, 7–10 July 2013; Society for Modeling & Simulation International: Toronto, Ontario, Canada, 2013; p. 37.
- 15.
Manríquez, F.; González, H.; Morales, N. Short-term open-pit production scheduling optimizing multiple objectives accounting for shovel allocation in stockpiles. Optim. Eng., 2023, 24: 681−707.
- 16.
Subtil, R.F.; Silva, D.M.; Alves, J.C. A practical approach to truck dispatch for open pit mines. In Proceedings of 35th APCOM Symposium 2011, Wollongong, Australia; 2011; pp. 765–777.
- 17.
Alexandre, R.F.; Campelo, F.; Vasconcelos, J.A. Multi-objective evolutionary algorithms for the truck dispatch problem in open-pit mining operations. Learn. Nonlinear Models, 2019, 17: 53−66.
- 18.
Fioroni, M.M.; Franzese, L.A.G.; Bianchi, T.J.; et al. Concurrent simulation and optimization models for mining planning. In Proceedings of 2008 Winter Simulation Conference, Miami, FL, USA, 07–10 December 2008; IEEE: Miami, FL, USA, 2008; pp. 759–767. doi: 10.1109/WSC.2008.4736138.
- 19.
Alarie, S.; Gamache, M. Overview of solution strategies used in truck dispatching systems for open pit mines. Int. J. Surf. Min. Reclam. Environ., 2002, 16: 59−76.
- 20.
Patterson, S.R.; Kozan, E.; Hyland, P. Energy efficient scheduling of open-pit coal mine trucks. Eur. J. Oper. Res., 2017, 262: 759−770.
- 21.
Bastos, G.S.; Souza, L.E.; Ramos, F.T.; et al. A single-dependent agent approach for stochastic time-dependent truck dispatching in open-pit mining. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 05–07 October 2011; IEEE: Washington, DC, USA, 2011; pp. 1057–1062. doi: 10.1109/ITSC.2011.6082902.
- 22.
Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. ETH Library: Zürich, 2001.
- 23.
Deb, K.; Pratap, A.; Agarwal, S.; et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2002, 6: 182−197.
- 24.
Zhang, Q.F.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput., 2007, 11: 712−731.
- 25.
Mohtasham, M.; Mirzaei-Nasirabad, H.; Askari-Nasab, H.; et al. A multi-objective model for fleet allocation schedule in open-pit mines considering the impact of prioritising objectives on transportation system performance. Int. J. Min. Reclam. Environ., 2021, 35: 709−727.
- 26.
Greene, D.L. Estimated speed/fuel consumption relationships for a large sample of cars. Energy, 1981, 6: 441−446.
- 27.
Ghaffariyan, M.R.; Barrier, C.; Brown, M.; et al. A Short Review of Timber Truck Fuel Consumption Studies. University of the Sunshine Coast: Brisbane, 2018.
- 28.
Corne, D.W.; Jerram, N.R.; Knowles, J.D.; et al. PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco, CA, USA, 7–10 July, 2001; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2007; pp. 283–290.