- 1.
Walsh, G.C.; Ye, H.; Bushnell, L.G, Stability analysis of networked control systems. IEEE Trans. Control Syst. Technol., 2002, 10: 438−446.
- 2.
Liu, Y.J.; Tang, L.; Tong, S.C.; et al, Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans. Neural Netw. Learn. Syst., 2015, 26: 165−176.
- 3.
Wang, D.; He, H.B.; Zhong, X.N.; et al, Event-driven nonlinear discounted optimal regulation involving a power system application. IEEE Trans. Ind. Electron., 2017, 64: 8177−8186.
- 4.
Wang, T.; Gao, H.J.; Qiu, J.B, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Ind. Electron., 2016, 27: 416−425.
- 5.
Werbos, P.J, Foreword-ADP: The key direction for future research in intelligent control and understanding brain intelligence. IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), 2008, 38: 898−900.
- 6.
Song, R.Z.; Wei, Q.L.; Zhang, H.G.; et al, Discrete-time non-zero-sum games with completely unknown dynamics. IEEE Trans. Cybern., 2021, 51: 2929−2943.
- 7.
Yang, X.; He, H.B.; Zhong, X.N, Adaptive dynamic programming for robust regulation and its application to power systems. IEEE Trans. Ind. Electron., 2018, 65: 5722−5732.
- 8.
Zhong, X.N.; He, H.B.; Wang, D.; et al, Model-free adaptive control for unknown nonlinear zero-sum differential game. IEEE Trans. Cybern., 2018, 48: 1633−1646.
- 9.
Li, B.; Wang, Z.D.; Han, Q.L.; et al, Distributed quasiconsensus control for stochastic multiagent systems under Round-Robin protocol and uniform quantization. IEEE Trans. Cybern., 2022, 52: 6721−6732.
- 10.
Wang, Y.Z.; Wang, Z.D.; Zou, L.; et al, H∞ PID control for discrete-time fuzzy systems with infinite-distributed delays under Round-Robin communication protocol. IEEE Trans. Fuzzy Syst., 2022, 30: 1875−1888.
- 11.
Song, J.; Wang, Z.D.; Niu, Y.G.; et al, Observer-based sliding mode control for state-saturated systems under weighted try-once-discard protocol. Int. J. Robust Nonlinear Control, 2020, 30: 7991−8006.
- 12.
Geng, H.; Wang, Z.D.; Chen, Y.; et al, Variance-constrained filtering fusion for nonlinear cyber-physical systems with the denial-of-service attacks and stochastic communication protocol. IEEE/CAA J. Autom. Sin., 2022, 9: 978−989.
- 13.
Liu, H.J.; Wang, Z.D.; Fei, W.Y.; et al, On finite-horizon H∞ state estimation for discrete-time delayed memristive neural networks under stochastic communication protocol. Inf. Sci., 2021, 555: 280−292.
- 14.
Luo, B.; Yang, Y.; Liu, D.R.; et al, Event-triggered optimal control with performance guarantees using adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31: 76−88.
- 15.
Ge, X.H.; Han, Q.L, Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybern., 2017, 47: 1807−1819.
- 16.
Wang, Z.D.; Wang, L.C.; Liu, S, Encoding-decoding-based control and filtering of networked systems: Insights, developments and opportunities. IEEE/CAA J. Autom. Sin., 2018, 5: 3−18.
- 17.
Xu, Y.; Liu, C.; Lu, R.Q.; et al, Remote estimator design for time-delay neural networks using communication state information. IEEE Trans. Neural Netw. Learn. Syst., 2018, 29: 5149−5158.
- 18.
Wang, L.C.; Wang, Z.D.; Han, Q.L.; et al, Synchronization control for a class of discrete-time dynamical networks with packet dropouts: A cording-decoding-based approach. IEEE Trans. Cybern., 2018, 48: 2437−2448.
- 19.
Liu, S.; Wang, Z.D.; Wang, L.C.; et al, H∞ pinning control of complex dynamical networks under dynamic quantization effects: A coupled backward Riccati equation approach. IEEE Trans. Cybern., 2022, 52: 7377−7387.
- 20.
Wang, X.L.; Ding, D.R.; Dong, H.L.; et al. PI-based security control against joint sensor and controller attacks and applications in load frequency control. IEEE Trans. Syst., Man, Cybern.: Syst. 2022, in press. doi:
10.1109/TSMC.2022.3190005 - 21.
Zhao, D.; Wang, Z.D.; Han, Q.L.; et al, Proportional-integral observer design for uncertain time-delay systems subject to deception attacks: An outlier-resistant approach. IEEE Trans. Syst., Man, Cybern.: Syst., 2022, 52: 5152−5164.
- 22.
Zhang, H.G.; Luo, Y.H.; Liu, D.R, Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans. Neural Netw., 2009, 20: 1490−1503.
- 23.
Al-Tamimi, A.; Lewis, F.L.; Abu-Khalaf, M, Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof. IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), 2008, 38: 943−949.
- 24.
Heydari, A, Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy. IEEE Trans. Neural Netw. Learn. Syst., 2018, 29: 4522−4527.
- 25.
Powell, W.B. Approximate Dynamic Programming: Solving the Curses of Dimensionality; Wiley: Hoboken, NJ, USA, 2007.
- 26.
Prokhorov, D.V.; Wunsch, D.C, Adaptive critic designs. IEEE Trans. Neural Netw., 1997, 8: 997−1007.
- 27.
Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
- 28.
Bellman, R. Dynamic Programming; Princeton University Press: Princeton, 1957.
- 29.
White, D.A.; Sofge, D.A. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches; Van Nostrand Reinhold: New York, 1992.
- 30.
Padhi, R.; Unnikrishnan, N.; Wang, X.H.; et al, A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems. Neural Netw., 2006, 19: 1648−1660.
- 31.
He, H.B.; Ni, Z.; Fu, J, A three-network architecture for on-line learning and optimization based on adaptive dynamic programming. Neurocomputing, 2012, 78: 3−13.
- 32.
Xu, X.; Hou, Z.S.; Lian, C.Q.; et al, Online learning control using adaptive critic designs with sparse kernel machines. IEEE Trans. Neural Netw. Learn. Syst., 2013, 24: 762−775.
- 33.
Bertsekas, D.P, Value and policy iterations in optimal control and adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28: 500−509.
- 34.
Pang, B.; Bian, T.; Jiang, Z.P, Robust policy iteration for continuous-time linear quadratic regulation. IEEE Trans. Autom. Control, 2022, 67: 504−511.
- 35.
Jiang, H.Y.; Zhou, B, Bias-policy iteration based adaptive dynamic programming for unknown continuous-time linear systems. Automatica, 2022, 136: 110058.
- 36.
Ha, M.M.; Wang, D.; Liu, D.R. A novel value iteration scheme with adjustable convergence rate. IEEE Trans. Neural Netw. Learn. Syst. 2022, in press. doi:
10.1109/TNNLS.2022.3143527 - 37.
Vamvoudakis, K.G.; Lewis, F.L, Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica, 2010, 46: 878−888.
- 38.
Yang, X.; Liu, D.R.; Ma, H.W.; et al, Online approximate solution of HJI equation for unknown constrained-input nonlinear continuous-time systems. Inf. Sci., 2016, 328: 435−454.
- 39.
Liu, D.R.; Wang, D.; Li, H.L, Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach. IEEE Trans. Neural Netw. Learn. Syst., 2014, 25: 418−428.
- 40.
Zhang, Y.W.; Zhao, B.; Liu, D.R.; et al. Adaptive dynamic programming-based event-triggered robust control for multiplayer nonzero-sum games with unknown dynamics 1-4mmPlease verify and confirm the term “Multi-Player” has been changed to “Multiplayer” in the title of this article. IEEE Trans. Cybern. 2022, in press. doi:
10.1109/TCYB.2022.3175650 - 41.
Xue, S.; Luo, B.; Liu, D.R, Event-triggered adaptive dynamic programming for unmatched uncertain nonlinear continuous-time systems. IEEE Trans. Neural Netw. Learn. Syst., 2021, 32: 2939−2951.
- 42.
Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, U.K., 2005.
- 43.
Xu, H.; Zhao, Q.M.; Jagannathan, S, Finite-horizon near-optimal output feedback neural network control of quantized nonlinear discrete- time systems with input constraint. IEEE Trans. Neural Netw. Learn. Syst., 2015, 26: 1776−1788.
- 44.
Zhao, Q.; Xu, H.; Jagannathan, S, Optimal control of uncertain quantized linear discrete-time systems. Int. J. Adapt .Control Signal Process., 2015, 29: 325−345.
- 45.
Fan, Q.Y.; Yang, G.H.; Ye, D, Quantization-based adaptive actor-critic tracking control with tracking error constraints. IEEE Trans. Neural Netw. Learn. Syst., 2018, 29: 970−980.
- 46.
Zhang, J.L.; Zhang, H.G.; Luo, Y.H.; et al, Model-free optimal control design for a class of linear discrete-time systems with multiple delays using adaptive dynamic programming. Neurocomputing, 2014, 135: 163−170.
- 47.
Zhang, H.G.; Liu, Y.; Xiao, G.Y.; et al, Data-based adaptive dynamic programming for a class of discrete-time systems with multiple delays. IEEE Trans. Syst., Man, Cybern.: Syst., 2020, 50: 432−441.
- 48.
Liu, Y.; Zhang, H.G.; Yu, R.; et al, H∞ tracking control of discrete-time system with delays via data-based adaptive dynamic programming. IEEE Trans. Syst., Man, Cybern.: Syst., 2020, 50: 4078−4085.
- 49.
Zhang, H.G.; Ren, H.; Mu, Y.F.; et al, Optimal consensus control design for multiagent systems with multiple time delay using adaptive dynamic programming. IEEE Trans. Cybern., 2022, 52: 12832−12842.
- 50.
Li, S.; Ding, L.; Gao, H.B.; et al, ADP-based online tracking control of partially uncertain time-delayed nonlinear system and application to wheeled mobile robots. IEEE Trans. Cybern., 2020, 50: 3182−3194.
- 51.
Chen, Y.G.; Wang, Z.D.; Qian, W.; et al, Asynchronous observer-based H∞ control for switched stochastic systems with mixed delays under quantization and packet dropouts. Nonlinear Anal.: Hybrid Syst., 2018, 27: 225−238.
- 52.
Sheng, L.; Wang, Z.D.; Wang, W.B.; et al, Output-feedback control for nonlinear stochastic systems with successive packet dropouts and uniform quantization effects. IEEE Trans. Syst., Man, Cybern. Syst., 2017, 47: 1181−1191.
- 53.
Jiang, Y.; Liu, L.; Feng, G. Adaptive optimal control of networked nonlinear systems with stochastic sensor and actuator dropouts based on reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 2022, in press. doi:
10.1109/TNNLS.2022.3183020.
- 54.
Xu, H.; Jagannathan, S.; Lewis, F.L, Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses. Automatica, 2012, 48: 1017−1030.
- 55.
Jiang, Y.; Fan, J.L.; Chai, T.Y.; et al, Tracking control for linear discrete-time networked control systems with unknown dynamics and dropout. IEEE Trans. Neural Netw. Learn. Syst., 2018, 29: 4607−4620.
- 56.
Gao, W.N.; Deng, C.; Jiang, Y.; et al, Resilient reinforcement learning and robust output regulation under denial-of-service attacks. Automatica, 2022, 142: 110366.
- 57.
Wang, X.L.; Ding, D.R.; Ge, X.H.; et al, Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: The adaptive event-triggered case. Int. J. Robust Nonlinear Control, 2022, 32: 2760−2779.
- 58.
Huang, X.; Dong, J.X, ADP-based robust resilient control of partially unknown nonlinear systems via cooperative interaction design. IEEE Trans. Syst., Man, Cybern.: Syst., 2021, 51: 7466−7474.
- 59.
Song, J.; Huang, L.Y.; Karimi, H.R.; et al, ADP-based security decentralized sliding mode control for partially unknown large- scale systems under injection attacks. IEEE Trans. Circuits Syst. I: Regul. Pap., 2020, 67: 5290−5301.
- 60.
Lian, B.S.; Xue, W.Q.; Lewis, F.L.; et al, Online inverse reinforcement learning for nonlinear systems with adversarial attacks. Int. J. Robust Nonlinear Control, 2021, 31: 6646−6667.
- 61.
Dong, L.; Zhong, X.N.; Sun, C.Y.; et al, Event-triggered adaptive dynamic programming for continuous-time systems with control constraints. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28: 1941−1952.
- 62.
Xue, S.; Luo, B.; Liu, D.R, Event-triggered adaptive dynamic programming for zero-sum game of partially unknown continuous-time nonlinear systems. IEEE Trans. Syst., Man, Cybern.: Syst., 2020, 50: 3189−3199.
- 63.
Xue, S.; Luo, B.; Liu, D.R.; et al, Constrained event-triggered H∞ control based on adaptive dynamic programming with concurrent learning. IEEE Trans. Syst., Man, Cybern.: Syst., 2022, 52: 357−369.
- 64.
Cui, L.L.; Xie, X.P.; Guo, H.Y.; et al, Dynamic event-triggered distributed guaranteed cost FTC scheme for nonlinear interconnected systems via ADP approach. Appl. Math. Comput., 2022, 425: 127082.
- 65.
Dong, L.; Zhong, X.N.; Sun, C.Y.; et al, Adaptive event-triggered control based on heuristic dynamic programming for nonlinear discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28: 1594−1605.
- 66.
Zhang, P.; Yuan, Y.; Guo, L, Fault-tolerant optimal control for discrete-time nonlinear system subjected to input saturation: A dynamic event-triggered approach. IEEE Trans. Cybern., 2021, 51: 2956−2968.
- 67.
Zhang, Y.W.; Zhao, B.; Liu, D.R.; Zhang, S.C, Event-triggered control of discrete-time zero-sum games via deterministic policy gradient adaptive dynamic programming. IEEE Trans. Syst., Man, Cybern.: Syst., 2022, 52: 4823−4835.
- 68.
Zhao, S.W.; Wang, J.C.; Wang, H.Y.; et al, Goal representation adaptive critic design for discrete-time uncertain systems subjected to input constraints: The event-triggered case. Neurocomputing, 2022, 492: 676−688.
- 69.
Zhao, S.W.; Wang, J.C, Robust optimal control for constrained uncertain switched systems subjected to input saturation: The adaptive event- triggered case. Nonlinear Dyn., 2022, 110: 363−380.
- 70.
Zhong, X.N.; He, H.B, An event-triggered ADP control approach for continuous-time system with unknown internal states. IEEE Trans. Cybern., 2017, 47: 683−694.
- 71.
Yang, X.; Zhu, Y.H.; Dong, N.; et al, Decentralized event-driven constrained control using adaptive critic designs. IEEE Trans. Neural Netw. Learn. Syst., 2022, 33: 5830−5844.
- 72.
Wang, D.; Ha, M.M.; Qiao, J.F, Self-learning optimal regulation for discrete-time nonlinear systems under event-driven formulation. IEEE Trans. Autom. Control, 2020, 65: 1272−1279.
- 73.
Zou, L.; Wang, Z.D.; Han, Q.L.; et al, Ultimate boundedness control for networked systems with Try-Once-Discard protocol and uniform quantization effects. IEEE Trans. Autom. Control, 2017, 62: 6582−6588.
- 74.
Liu, K.; Fridman, E.; Hetel, L, Stability and L2-gain analysis of networked control systems under Round-Robin scheduling: A time-delay approach. Syst. Control Lett., 2012, 61: 666−675.
- 75.
Zou, L.; Wang, Z.D.; Gao, H.J, Observer-based H∞ control of networked systems with stochastic communication protocol: The finite-horizon case. Automatica, 2016, 63: 366−373.
- 76.
Ding, D.R.; Wang, Z.D.; Han, Q.L.; et al, Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE Trans. Cybern., 2019, 49: 2372−2384.
- 77.
Zou, L.; Wang, Z.D.; Han, Q.L.; et al, Full information estimation for time-varying systems subject to round-robin scheduling: A recursive filter approach. IEEE Trans. Syst., Man, Cybern.: Syst., 2021, 51: 1904−1916.
- 78.
Yuan, Y.; Shi, M.; Guo, L.; et al, A resilient consensus strategy of near-optimal control for state-saturated multiagent systems with round-robin protocol. Int. J. Robust Nonlinear Control, 2019, 29: 3200−3216.
- 79.
Yuan, Y.; Zhang, P.; Wang, Z.D.; et al, Noncooperative event-triggered control strategy design with round-robin protocol: Applications to load frequency control of circuit systems. IEEE Trans. Ind. Electron., 2020, 67: 2155−2166.
- 80.
Yuan, Y.; Wang, Z.D.; Zhang, P.; et al, Near-optimal resilient control strategy design for state-saturated networked systems under stochastic communication protocol. IEEE Trans. Cybern., 2019, 49: 3155−3167.
- 81.
Ding, D.R.; Wang, Z.D.; Han, Q.L, Neural-network-based output-feedback control with stochastic communication protocols. Automatica, 2019, 106: 221−229.
- 82.
Wang, X.L.; Ding, D.R.; Dong, H.L.; et al, Neural-network-based control for discrete-time nonlinear systems with input saturation under stochastic communication protocol. IEEE/CAA J. Autom. Sin., 2021, 8: 766−778.
- 83.
Wang, D.; Hu, L.Z.; Zhao, M.M.; et al. Adaptive critic for event-triggered unknown nonlinear optimal tracking design with wastewater treatment applications. IEEE Trans. Neural Netw. Learn. Syst. 2021, in press. doi:
10.1109/TNNLS.2021.3135405 - 84.
Wei, Q.L.; Liu, D.R, Adaptive dynamic programming for optimal tracking control of unknown nonlinear systems with application to coal gasification. IEEE Trans. Autom. Sci. Eng., 2014, 11: 1020−1036.
- 85.
Wei, Q.L.; Liu, D.R.; Lewis, F.L.; et al, Mixed iterative adaptive dynamic programming for optimal battery energy control in smart residential microgrids. IEEE Trans. Ind. Electron., 2017, 64: 4110−4120.
- 86.
Wei, Q.L.; Lu, J.W.; Zhou, T.M.; et al, Event-triggered near-optimal control of discrete-time constrained nonlinear systems with application to a boiler-turbine system. IEEE Trans. Ind. Inf., 2022, 18: 3926−3935.
- 87.
Yi, J.; Chen, S.; Zhong, X.N.; et al, Event-triggered globalized dual heuristic programming and its application to networked control systems. IEEE Trans. Ind. Inf., 2019, 15: 1383−1392.
- 88.
Gonzalez-Garcia, A.; Barragan-Alcantar, D.; Collado-Gonzalez, I.; et al, Adaptive dynamic programming and deep reinforcement learning for the control of an unmanned surface vehicle: Experimental results. Control Eng. Pract., 2021, 111: 104807.
- 89.
Heydari, A, Optimal impulsive control using adaptive dynamic programming and its application in spacecraft rendezvous. IEEE Trans. Neural Netw. Learn. Syst., 2021, 32: 4544−4552.
- 90.
Liu, F.; Jiang, C.P.; Xiao, W.D, Multistep prediction-based adaptive dynamic programming sensor scheduling approach for collaborative target tracking in energy harvesting wireless sensor networks. IEEE Trans. Autom. Sci. Eng., 2021, 18: 693−704.
- 91.
Zhao, J.; Wang, T.Y.; Pedrycz, W.; et al, Granular prediction and dynamic scheduling based on adaptive dynamic programming for the blast furnace gas system. IEEE Trans. Cybern., 2021, 51: 2201−2214.
- 92.
Hu, C.F.; Zhao, L.X.; Qu, G, Event-triggered model predictive adaptive dynamic programming for road intersection path planning of unmanned ground vehicle. IEEE Trans. Veh. Technol., 2021, 70: 11228−11243.
- 93.
Liang, L.; Song, J.B.; Li, H.S, Dynamic state aware adaptive source coding for networked control in cyberphysical systems. IEEE Trans. Veh. Technol., 2017, 66: 10000−10010.
- 94.
Zhao, S.W.; Wang, J.C.; Xu, H.T.; et al. Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles. IEEE Trans. Cybern. 2022, in press. doi:
10.1109/TCYB.2022.3192871 - 95.
Dou, L.Q.; Cai, S.Y.; Zhang, X.Y.; et al, Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV. J. Franklin Inst., 2022, 359: 3671−3691.
- 96.
Gao, Y.X.; Liu, C.S.; Duan, D.D.; et al, Distributed optimal event-triggered cooperative control for nonlinear multi-missile guidance systems with partially unknown dynamics. Int. J. Robust Nonlinear Control, 2022, 32: 8369−8396.
- 97.
Wang, X.L.; Ding, D.R.; Ge, X.H.; et al. Neural-network-based control with dynamic event-triggered mechanisms under DoS attacks and applications in load frequency control. IEEE Trans. Circuits Syst. I: Regul. Pap. 2022, in press. doi:
10.1109/TCSI.2022.3206370 - 98.
Wang, X.L.; Ding, D.R.; Ge, X.H.; et al, Supplementary control for quantized discrete-time nonlinear systems under goal representation heuristic dynamic programming. IEEE Trans. Neural Netw. Learn. Syst., 2022.