- 1.
- 2.
Park, S.W.; Park, H.S.; Kim, J. H.; et al. 3D displacement measurement model for health monitoring of structures using a motion capture system. Measurement, 2015, 59: 352−362.
- 3.
Zibrek, K.; Kokkinara, E.; McDonnell, R. The effect of realistic appearance of virtual characters in immersive environments-does the character's personality play a role? IEEE Trans. Vis. Comput. Graph., 2018, 24: 1681−1690.
- 4.
Jo, D.; Kim, K.H.; Kim, G.J. Effects of avatar and background representation forms to co-presence in mixed reality (MR) tele-conference systems. In
SIGGRAPH ASIA 2016 Virtual Reality Meets Physical Reality:
Modelling and Simulating Virtual Humans and Environments,
Macau,
China,
5–
8 December 2016; ACM: Macau, China, 2016; pp. 12. doi:
10.1145/2992138.2992146 - 5.
Latoschik, M.E.; Roth, D.; Gall, D.; et al. The effect of avatar realism in immersive social virtual realities. In
Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology,
Gothenburg,
Sweden,
8–
10 November 2017; ACM: Gothenburg, 2017; pp. 39. doi:
10.1145/3139131.3139156 - 6.
Garau, M. The Impact of Avatar Fidelity on Social Interaction in Virtual Environments. Ph.D. Thesis, University College London, London, UK, 2003.
- 7.
Mori, M.; MacDorman, K.F.; Kageki, N. The uncanny valley [from the field]. IEEE Robot. Autom. Mag., 2012, 19: 98−100.
- 8.
Hanson, D.; Olney, A.; Prilliman, S.; et al. Upending the uncanny valley. In Proceedings of the 20th National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, USA, 9–13 July 2005; AAAI Press: Pittsburgh, 2005; pp. 1728–1729.
- 9.
Geller, T. Overcoming the uncanny valley. IEEE Comput. Graph. Appl., 2008, 28: 11−17.
- 10.
Brenton, H.; Gillies, M.; Ballin, D.; et al. The uncanny valley: Does it exist. In Proceedings of the 11th Conference of Human Computer Interaction, Workshop on Human Animated Character Interaction, Las Vegas, NV, USA, Lawrence Erlbaum Associates: Las Vegas, 2005.
- 11.
Volante, M.; Babu, S.V.; Chaturvedi, H.; et al. Effects of virtual human appearance fidelity on emotion contagion in affective inter-personal simulations. IEEE Trans. Vis. Comput. Graph., 2016, 22: 1326−1335.
- 12.
Ries, B.; Interrante, V.; Kaeding, M.; et al. Analyzing the effect of a virtual avatar's geometric and motion fidelity on ego-centric spatial perception in immersive virtual environments. In
Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology,
Kyoto,
Japan,
18–
20 November 2009; ACM: Kyoto, 2009; pp. 59–66. doi:
10.1145/1643928.1643943 - 13.
- 14.
Cao, C.; Agrawal, V.; De La Torre, F.; et al. Real-time 3D neural facial animation from binocular video. ACM Trans. Graph., 2021, 40: 87.
- 15.
Yu, H.; Liu, H.H. Regression-based facial expression optimization. IEEE Trans. Hum. Mach. Syst., 2014, 44: 386−394.
- 16.
Wang, L.Z.; Chen, Z.Y.; Yu, T.; et al. FaceVerse: A fine-grained and detail-controllable 3D face morphable model from a hybrid dataset. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans,
LA,
USA,
18–
24 June 20220; IEEE: New Orleans, 2022; pp. 20301–20310. doi:
10.1109/CVPR52688.2022.01969 - 17.
Zhang, S.; Yu, H.; Wang, T.; et al. Linearly augmented real-time 4D expressional face capture. Inf. Sci., 2021, 545: 331−343.
- 18.
Zall, R.; Kangavari, M.R. Comparative analytical survey on cognitive agents with emotional intelligence. Cognit. Comput., 2022, 14: 1223−1246.
- 19.
D’Avella, S.; Camacho-Gonzalez, G.; Tripicchio, P. On Multi-Agent Cognitive Cooperation: Can virtual agents behave like humans? Neurocomputing, 2022, 480: 27−38.
- 20.
Thompson, J.; White, S.; Chapman, S. Interactive clinical avatar use in pharmacist preregistration training: Design and review. J. Med. Internet Res., 2020, 22: e17146.
- 21.
Sinatra, A.M.; Pollard, K.A.; Files, B.T.; et al. Social fidelity in virtual agents: Impacts on presence and learning. Comput. Hum. Behav., 2021, 114: 106562.
- 22.
Machidon, O.M.; Duguleana, M.; Carrozzino, M. Virtual humans in cultural heritage ICT applications: A review. J. Cult. Herit., 2018, 33: 249−260.
- 23.
Foni, A.E.; Papagiannakis, G.; Magnenat-Thalmann, N. Virtual Hagia Sophia: Restitution, visualization and virtual life simulation. In UNESCO World Heritage Congress (Vol. 2); 2002.
- 24.
Stefanova, M.; Pillan, M.; Gallace, A. Influence of realistic virtual environments and humanlike avatars on patients with social phobia. In
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
17–19 August 2021; ASME, 2021; pp. V002T02A081. doi:
10.1115/DETC2021-70265 - 25.
Mousas, C.; Koilias, A.; Rekabdar, B.; et al. Toward understanding the effects of virtual character appearance on avoidance movement behavior. In
2021 IEEE Virtual Reality and 3D User Interfaces (
VR),
Lisboa,
Portugal,
27 March 2021–1 April 2021; IEEE: Lisboa, 2021; pp. 40–49. doi:
10.1109/VR50410.2021.00024 - 26.
Hube, N.; Angerbauer, K.; Pohlandt, D.; et al. VR collaboration in large companies: An interview study on the role of avatars. In
2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (
ISMAR-Adjunct),
Bari,
Italy,
4–
8 October 2021; IEEE: Bari, 2021; pp. 139–144. doi:
10.1109/ISMAR-Adjunct54149.2021.00037 - 27.
Waltemate, T.; Gall, D.; Roth, D.; et al. The impact of avatar personalization and immersion on virtual body ownership, presence, and emotional response. IEEE Trans. Vis. Comput. Graph., 2018, 24: 1643−1652.
- 28.
Gochfeld, D.; Benzing, K.; Laibson, K.; et al. Avatar selection for live performance in virtual reality: A case study. In
2019 IEEE Games,
Entertainment,
Media Conference (
GEM),
New Haven,
CT,
USA,
18–
21 June 2019; IEEE: New Haven, 2019; pp. 1–5. doi:
10.1109/GEM.2019.8811548 - 29.
Ma, F.; Pan, X.N. Visual fidelity effects on expressive self-avatar in virtual reality: First impressions matter. In
2022 IEEE Conference on Virtual Reality and 3D User Interfaces (
VR),
Christchurch,
New Zealand,
12–
16 March 2022; IEEE: Christchurch, 2022; pp. 57–65. doi:
10.1109/VR51125.2022.00023 - 30.
Herrera, F.; Oh, S.Y.; Bailenson, J.N. Effect of behavioral realism on social interactions inside collaborative virtual environments. Presence: Teleoperat. Virtual Environ., 2018, 27: 163−182.
- 31.
Rogers, S.L.; Broadbent, R.; Brown, J.; et al. Realistic motion avatars are the future for social interaction in virtual reality. Front. Virtual Real., 2022, 2: 750729.
- 32.
Tinwell, A.; Grimshaw, M.; Nabi, D.A.; et al. Facial expression of emotion and perception of the Uncanny Valley in virtual characters. Comput. Hum. Behav., 2011, 27: 741−749.
- 33.
McDonnell, R.; Larkin, M.; Hernández, B.; et al. Eye-catching crowds: Saliency based selective variation. ACM Trans. Graph., 2009, 28: 55.
- 34.
Jack, R.E.; Garrod, O.G.B.; Yu, H.; et al. Facial expressions of emotion are not culturally universal. Proc. Natl. Acad. Sci. USA, 2012, 109: 7241−7244.
- 35.
Gonzalez-Franco, M.; Steed, A.; Hoogendyk, S.; et al. Using facial animation to increase the enfacement illusion and avatar self-identification. IEEE Trans. Vis. Comput. Graph., 2020, 26: 2023−2029.
- 36.
Bai, Z.C.; Yao, N.M.; Mishra, N.; et al. Enhancing emotional experience by building emotional virtual characters in VR volleyball games. Comput. Animat. Virtual Worlds, 2021, 32: e2008.
- 37.
Yun, C.; Deng, Z.G.; Hiscock, M. Can local avatars satisfy a global audience? A case study of high-fidelity 3D facial avatar animation in subject identification and emotion perception by US and international groups Comput. Entertain., 2009, 7: 21.
- 38.
Hodgins, J.; Jörg, S.; O'Sullivan, C.; et al. The saliency of anomalies in animated human characters. ACM Trans. Appl. Percept., 2010, 7: 22.
- 39.
Ruhland, K.; Zibrek, K.; McDonnell, R. Perception of personality through eye gaze of realistic and cartoon models. In
Proceedings of the ACM SIGGRAPH Symposium on Applied Perception,
Tübingen,
Germany,
13–
14 September 2015; ACM: Tübingen, 2015; pp. 19–23. doi:
10.1145/2804408.2804424 - 40.
Ruhland, K.; Peters, C.E.; Andrist, S.; et al. A review of eye gaze in virtual agents, social robotics and HCI: Behaviour generation, user interaction and perception. Comput. Graph. Forum, 2015, 34: 299−326.
- 41.
Kokkinara, E.; McDonnell, R. Animation realism affects perceived character appeal of a self-virtual face. In
Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games,
Paris,
France,
16–
18 November 2015; ACM: Paris, 2015; pp. 221–226. doi:
10.1145/2822013.2822035 - 42.
Cao, Q.D.; Yu, H.; Nduka, C. Perception of head motion effect on emotional facial expression in virtual reality. In
2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (
VRW),
Atlanta,
GA,
USA,
22–
26 March 2020; IEEE: Atlanta, 2020; pp. 750–751. doi:
10.1109/VRW50115.2020.00226 - 43.
Garau, M.; Slater, M.; Vinayagamoorthy, V.; et al. The impact of avatar realism and eye gaze control on perceived quality of communication in a shared immersive virtual environment. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Ft.
Lauderdale,
FL,
USA,
5–
10 April 2003; ACM: Ft. Lauderdale, 2003; pp. 529–536. doi:
10.1145/642611.642703 - 44.
Petrović, V.M. Artificial intelligence and virtual worlds-toward human-level AI agents. IEEE Access, 2018, 6: 39976−39988.
- 45.
Norouzi, N.; Kim, K.; Hochreiter, J.; et al. A systematic survey of 15 years of user studies published in the intelligent virtual agents conference. In
Proceedings of the 18th International Conference on Intelligent Virtual Agents,
Sydney,
Australia,
5–
8 November 2018; ACM: Sydney, 2018; pp. 17–22. doi:
10.1145/3267851.3267901 - 46.
Luerssen, M.H.; Hawke, T. Virtual agents as a service: Applications in healthcare. In
Proceedings of the 18th International Conference on Intelligent Virtual Agents,
Sydney,
Australia,
5–
8 November 2018; ACM: Sydney, 2018; pp. 107–112. doi:
10.1145/3267851.3267858 - 47.
Alicja, K.; Maciej, M. Can AI see bias in X-ray images. Int. J. Network Dyn. Intell., 2022, 1: 48−64.
- 48.
Jiang, F.; Jiang, Y.; Zhi, H.; et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol., 2017, 2: 230−243.
- 49.
Zhao, G.Y.; Li, Y.T.; Xu, Q.R. From emotion AI to cognitive AI. Int. J. Network Dyn. Intell., 2022, 1: 65−72.
- 50.
Bosse, T.; Hartmann, T.; Blankendaal, R.A.M.; et al. Virtually bad: A study on virtual agents that physically threaten human beings. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden, 10–15 July 2018; International Foundation for Autonomous Agents and Multiagent Systems: Stockholm, 2018; pp. 1258–1266.
- 51.
Schmidt, S.; Zimmermann, S.; Mason, C.; et al. Simulating human imprecision in temporal statements of intelligent virtual agents. In
CHI Conference on Human Factors in Computing Systems,
New Orleans,
LA,
USA,
29 April 2022–
5 May 2022; ACM: New Orleans, 2022; pp. 422. doi:
10.1145/3491102.3517625 - 52.
Aneja, D.; McDuff, D.; Shah, S. A high-fidelity open embodied avatar with lip syncing and expression capabilities. In
2019 International Conference on Multimodal Interaction,
Suzhou,
China,
14–
18 October 2019; ACM: Suzhou, 2019; pp. 69–73. doi:
10.1145/3340555.3353744 - 53.
Niu, Z.Y.; Zhong, G.Q.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing, 2021, 452: 48−62.
- 54.
Liu, S.M.; Xia, Y.F.; Shi, Z.S.; et al. Deep learning in sheet metal bending with a novel theory-guided deep neural network. IEEE/CAA J. Autom. Sin., 2021, 8: 565−581.
- 55.
Vaitonytė, J.; Blomsma, P.A.; Alimardani, M.; et al. Realism of the face lies in skin and eyes: Evidence from virtual and human agents. Comput. Hum. Behav. Rep., 2021, 3: 100065.
- 56.
Lu, P.; Song, B.Y.; Xu, L. Human face recognition based on convolutional neural network and augmented dataset. Syst. Sci. Control Eng., 2021, 9: 29−37.
- 57.
Xia, Y.F.; Yu, H.; Wang, X.; et al. Relation-aware facial expression recognition. IEEE Trans. Cognit. Dev. Syst., 2022, 14: 1143−1154.
- 58.
Ahmed, I.; Din, S.; Jeon, G.; et al. Towards collaborative robotics in top view surveillance: A framework for multiple object tracking by detection using deep learning. IEEE/CAA J. Autom. Sin., 2021, 8: 1253−1270.
- 59.
- 60.
Xia, Y.F.; Zheng, W.B.; Wang, Y.M.; et al. Local and global perception generative adversarial network for facial expression synthesis. IEEE Trans. Circuits Syst. Video Technol., 2022, 32: 1443−1452.
- 61.
Lou, J.W.; Wang, Y.M.; Nduka, C.; et al. Realistic facial expression reconstruction for VR HMD users. IEEE Trans. Multimedia, 2020, 22: 730−743.
- 62.
Laustsen, M.; Andersen, M.; Xue, R.; et al. Tracking of rigid head motion during MRI using an EEG system. Magn. Reson. Med., 2022, 88: 986−1001.
- 63.
Zhang, J.Y.; Chen, K.Y.; Zheng, J.M. Facial expression retargeting from human to avatar made easy. IEEE Trans. Vis. Comput. Graph., 2022, 28: 1274−1287.
- 64.
Zhang, X.G.; Yang, X.X.; Zhang, W.G.; et al. Crowd emotion evaluation based on fuzzy inference of arousal and valence. Neurocomputing, 2021, 445: 194−205.
- 65.
Ye, F.; Zhang, S.; Wang, P.; et al. A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles. In
2021 IEEE Intelligent Vehicles Symposium (
IV),
Nagoya,
Japan,
11–
17 July 2021; IEEE: Nagoya, 2021; pp. 1073–1080. doi:
10.1109/IV48863.2021.9575880 - 66.
Yue, W.B.; Wang, Z.D.; Zhang, J.Y.; et al. An overview of recommendation techniques and their applications in healthcare. IEEE/CAA J. Autom. Sin., 2021, 8: 701−717.
- 67.
He, X.; Pan, Q.K.; Gao, L.; et al. A greedy cooperative Co-evolution ary algorithm with problem-specific knowledge for multi-objective flowshop group scheduling problems. IEEE Trans. Evol. Comput. 2021, in press. doi:10.1109/TEVC.2021.3115795
- 68.
Liu, W.B.; Wang, Z.D.; Zeng, N.Y.; et al. A novel randomised particle swarm optimizer. Int. J. Mach. Learn. Cybern., 2021, 12: 529−540.
- 69.
Zhang, K.; Su, Y.K.; Guo, X.W.; et al. MU-GAN: Facial attribute editing based on multi-attention mechanism. IEEE/CAA J. Autom. Sin., 2021, 8: 1614−1626.
- 70.
Wang, Y.M.; Dong, X.H.; Li, G.F.; et al. Cascade regression-based face frontalization for dynamic facial expression analysis. Cognit. Comput., 2022, 14: 1571−1584.
- 71.
Gou, C.; Zhou, Y.C.; Xiao, Y.; et al. Cascade learning for driver facial monitoring. IEEE Trans. Intell. Veh., 2023, 8: 404−412.
- 72.
Sharma, S.; Kumar, V. Voxel-based 3D face reconstruction and its application to face recognition using sequential deep learning. Multimed. Tools Appl., 2020, 79: 17303−17330.
- 73.
Sherman, W.R.; Craig, A.B. Understanding Virtual Reality: Interface, Application, and Design; Morgan Kaufmann: Boston, USA, 2003.
- 74.
Zell, E.; Aliaga, C.; Jarabo, A.; et al. To stylize or not to stylize?: The effect of shape and material stylization on the perception of computer-generated faces ACM Trans. Graph., 2015, 34: 184.
- 75.
Yu, H.; Garrod, O.G.B.; Schyns, P.G. Perception-driven facial expression synthesis. Comput. Graph., 2012, 36: 152−162.
- 76.
Andrist, S.; Pejsa, T.; Mutlu, B.; et al. Designing effective gaze mechanisms for virtual agents. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Austin,
TX,
USA,
5–
10 May 2012; ACM: Austin, 2012; pp. 705–714. doi:
10.1145/2207676.2207777 - 77.
Bopp, J.A.; Müller, L.J.; Aeschbach, L.F.; et al. Exploring emotional attachment to game characters. In
Proceedings of the Annual Symposium on Computer-Human Interaction in Play,
Barcelona,
Spain,
22–
25 October 2019; ACM: Barcelona, 2019; pp. 313–324. doi:
10.1145/3311350.3347169 - 78.
Wisessing, P.; Zibrek, K.; Cunningham, D.W.; et al. Enlighten me: Importance of brightness and shadow for character emotion and appeal. ACM Trans. Graph., 2020, 39: 19.
- 79.
Bailenson, J.N.; Beall, A.C.; Blascovich, J. Gaze and task performance in shared virtual environments. J. Visual. Comput. Anim., 2002, 13: 313−320.
- 80.
Sharma, M.; Vemuri, K. Accepting human-like avatars in social and professional roles. ACM Trans. Hum. Robot Interact., 2022, 11: 28.
- 81.
Freeman, G.; Zamanifard, S.; Maloney, D.; et al. My body, my avatar: How people perceive their avatars in social virtual reality. In
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems,
Honolulu,
HI,
USA,
25–
30 April 2020; ACM: Honolulu, 2020; pp. 1–8. doi:
10.1145/3334480.3382923 - 82.
Ducheneaut, N.; Wen, M.H.; Yee, N.; et al. Body and mind: A study of avatar personalization in three virtual worlds. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Boston,
MA,
USA,
4–
9 April 2009; ACM: Boston, 2009; pp. 1151–1160. doi:
10.1145/1518701.1518877 - 83.
Pan, X.N.; Hamilton, A.F.D.C. Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape. Br. J. Psychol., 2018, 109: 395−417.