- 1.
Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, 2009.
- 2.
Li, Y.; Zhang, Y.Z.; Yuan, Z.F.; et al. Marine oil spill detection based on the comprehensive use of polarimetric SAR data. Sustainability, 2018, 10: 4408.
- 3.
Chen, G.D.; Li, Y.; Sun, G.M.; et al. Application of deep networks to oil spill detection using polarimetric synthetic aperture radar images. Appl. Sci., 2017, 7: 968.
- 4.
Miao, T.; Zeng, H.C.; Yang, W.; et al. An improved lightweight RetinaNet for ship detection in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2022, 15: 4667−4679.
- 5.
Zhang, Y.Z.; Li, Y.; Liang, X.S.; et al. Comparison of oil spill classifications using fully and compact polarimetric SAR images. Appl. Sci., 2017, 7: 193.
- 6.
Bai, Y.K.; Sun, G.M.; Li, Y.; et al. Comprehensively analyzing optical and polarimetric SAR features for land-use/land-cover classification and urban vegetation extraction in highly-dense urban area. Int. J. Appl. Earth Obs. Geoinf., 2021, 103: 102496.
- 7.
Gandhi, P.P.; Kassam, S.A. Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst., 1988, 24: 427−445.
- 8.
Liu, T.; Zhang, J.F.; Gao, G.; et al. CFAR ship detection in polarimetric synthetic aperture radar images based on whitening filter. IEEE Trans. Geosci. Remote Sens., 2020, 58: 58−81.
- 9.
Wang, C.L.; Bi, F.K.; Zhang, W.P.; et al. An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci. Remote Sens. Lett., 2017, 14: 529−533.
- 10.
Qin, X.X.; Zhou, S.L.; Zou, H.X.; et al. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett., 2013, 10: 806−810.
- 11.
Li, Y.; Yuan, Z.F.; Zheng, K.; et al. A novel detail weighted histogram equalization method for brightness preserving image enhancement based on partial statistic and global mapping model. IET Image Process., 2022, 16: 3325−3341.
- 12.
Chen, C.L.P.; Li, H.; Wei, Y.T.; et al. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens., 2014, 52: 574−581.
- 13.
Wang, X.L.; Chen, C.X. Ship detection for complex background SAR images based on a multiscale variance weighted image entropy method. IEEE Geosci. Remote Sens. Lett., 2017, 14: 184−187.
- 14.
Wang, X.L.; Chen, C.X.; Pan, Z.; et al. Fast and automatic ship detection for SAR imagery based on multiscale contrast measure. IEEE Geosci. Remote Sens. Lett., 2019, 16: 1834−1838.
- 15.
Achanta, R.; Shaji, A.; Smith, K.; et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34: 2274−2282.
- 16.
Wang, X.Q.; Li, G.; Zhang, X.P.; et al. Ship detection in SAR images via local contrast of Fisher vectors. IEEE Trans. Geosci. Remote Sens., 2020, 58: 6467−6479.
- 17.
Li, T.; Liu, Z.; Xie, R.; et al. An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2018, 11: 184−194.
- 18.
Xie, T.; Huang, J.J.; Shi, Q. Z.; et al. PSDSD-A superpixel generating method based on pixel saliency difference and spatial distance for SAR images. Sensors, 2019, 19: 304.
- 19.
Tirandaz, Z.; Akbarizadeh, G.; Kaabi, H. PolSAR image segmentation based on feature extraction and data compression using weighted neighborhood filter bank and hidden Markov random field-expectation maximization. Measurement, 2020, 153: 107432.
- 20.
Hwang, J.I.; Jung, H.S. Automatic ship detection using the artificial neural network and support vector machine from X-band SAR satellite images. Remote Sens., 2018, 10: 1799.
- 21.
Baek, W.K.; Jung, H.S. Performance comparison of oil spill and ship classification from X-band dual- and single-polarized SAR image using support vector machine, random forest, and deep neural network. Remote Sens., 2021, 13: 3203.
- 22.
Li, H.L.; Cui, X.C.; Chen, S.W. PolSAR ship detection with optimal polarimetric rotation domain features and SVM. Remote Sens., 2021, 13: 3932.
- 23.
Wang, H.B.; Zhao, Y.C.; Wang, H.N.; et al. Ship detection in compact polarimetric SAR imagery based on weighted SVM and m-χ decomposition. J. Terahertz Sci. Electron. Inf. Technol., 2016, 14: 554−561.
- 24.
Lin, H.P.; Chen, H.; Jin, K.; et al. Ship detection with superpixel-level Fisher vector in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett., 2020, 17: 247−251.
- 25.
Aghaei, N.; Akbarizadeh, G.; Kosarian, A. GreyWolfLSM: An accurate oil spill detection method based on level set method from synthetic aperture radar imagery. Eur. J. Remote Sens., 2022, 55: 181−198.
- 26.
Zhou, Z.; Cui, Z.Y.; Cao, Z.J.; et al. Feature-transferable pyramid network for cross-scale object detection in SAR images. J. Radars, 2021, 10: 544−558.
- 27.
Zhang, J.S.; Xing, M.D.; Sun, G.C.; et al. Oriented gaussian function-based box boundary-aware vectors for oriented ship detection in multiresolution SAR imagery. IEEE Trans. Geosci. Remote Sens., 2022, 60: 5211015.
- 28.
Sun, Y.R.; Sun, X.; Wang, Z.R.; et al. Oriented ship detection based on strong scattering points network in large-scale SAR images. IEEE Trans. Geosci. Remote Sens., 2022, 60: 5218018.
- 29.
Li, X.Q.; Li, D.; Liu, H.Q.; et al. A-BFPN: An attention-guided balanced feature pyramid network for SAR ship detection. Remote Sens., 2022, 14: 3829.
- 30.
Fu, J.M.; Sun, X.; Wang, Z.R.; et al. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images. IEEE Trans. Geosci. Remote Sens., 2021, 59: 1331−1344.
- 31.
Jiao, J.; Zhang, Y.; Sun, H.; et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection. IEEE Access, 2018, 6: 20881−20892.
- 32.
Lv, J.M.; Chen, J.; Huang, Z.X.; et al. An anchor-free detection algorithm for SAR ship targets with deep saliency representation. Remote Sens., 2023, 15: 103.
- 33.
Fu, K.; Li, Y.; Sun, H.; et al. A ship rotation detection model in remote sensing images based on feature fusion pyramid network and deep reinforcement learning. Remote Sens., 2018, 10: 1922.
- 34.
Sharifzadeh, F.; Akbarizadeh, G.; Kavian, Y.S. Ship classification in SAR images using a new hybrid CNN–MLP classifier. J. Indian Soc. Remote Sens., 2019, 47: 551−562.
- 35.
Samadi, F.; Akbarizadeh, G.; Kaabi, H. Change detection in SAR images using deep belief network: a new training approach based on morphological images. IET Image Process., 2019, 13: 2255−2264.
- 36.
Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: New York, NY, USA, 2019. doi: 10.1017/9781108380690.
- 37.
Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), 1999, 29: 433−439.
- 38.
Shu, Y.M.; Li, J.; Yousif, H.; et al. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring. Remote Sens. Environ., 2010, 114: 2026−2035.
- 39.
Feng, X.G.; Milanfar, P. Multiscale principal components analysis for image local orientation estimation. In Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002, Pacific Grove, CA, USA, 3–6 November 2002; IEEE: New York, 2002; pp. 478–482. doi:10.1109/ACSSC.2002.1197228
- 40.
Singh, K.; Vishwakarma, D.K.; Walia, G.S.; et al. Contrast enhancement via texture region based histogram equalization. J. Mod. Opt., 2016, 63: 1444−1450.
- 41.
Zhang, T.; Wang, W.; Quan, S.N.; et al. Region-based polarimetric covariance difference matrix for PolSAR ship detection. IEEE Trans. Geosci. Remote Sens., 2022, 60: 1−16.
- 42.
Wang, Y.Y.; Wang, C.; Zhang, H.; et al. A SAR dataset of ship detection for deep learning under complex backgrounds. Remote Sens., 2019, 11: 765.
- 43.
Zhang, T.W.; Zhang, X.L.; Li, J.W.; et al. SAR ship detection dataset (SSDD): Official release and comprehensive data analysis. Remote Sens., 2021, 13: 3690.
- 44.
Li, J.W.; Qu, C.W.; Shao, J.Q. Ship detection in SAR images based on an improved faster R-CNN. In 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 13–14 November 2017; IEEE: New York, 2017; pp. 1–6. doi:10.1109/BIGSARDATA.2017.8124934
- 45.
di Bisceglie, M.; Galdi, C. CFAR detection of extended objects in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens., 2005, 43: 833−843.
- 46.
Xiong, W.; Xu, Y.L.; Yao, L.B.; et al. A new ship target detection algorithm based on SVM in high resolution SAR images. Remote Sens. Technol. Appl., 2018, 33: 119−127.
- 47.
Lang, H.T.; Xi, Y.Y.; Zhang, X. Ship detection in high-resolution SAR images by clustering spatially enhanced pixel descriptor. IEEE Trans. Geosci. Remote Sens., 2019, 57: 5407−5423.
- 48.
Zhang, T.; Jiang, L.F.; Xiang, D.L.; et al. Ship detection from PolSAR imagery using the ambiguity removal polarimetric notch filter. ISPRS J. Photogramm. Remote Sens., 2019, 157: 41−58.
- 49.
Wang, X.L.; Chen, C.X.; Pan, Z.; et al. Superpixel-based LCM detector for faint ships hidden in strong noise background SAR imagery. IEEE Geosci. Remote Sens. Lett., 2019, 16: 417−421.
- 50.
Zou, Z.X.; Shi, Z.W. Ship detection in spaceborne optical image with SVD networks. IEEE Trans. Geosci. Remote Sens., 2016, 54: 5832−5845.
- 51.
Ai, J.Q. The application of SVD-based speckle reduction and tophat transform in preprocessing of ship detection. In IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015; IEEE: New York, 2015; pp. 1–4. doi:10.1049/cp.2015.0962
- 52.
Qi, J.L.; Sun, L.; Li, K.P.; et al. Gaussian noise parameter estimation based on multiple singular value decomposition and non-linear fitting. IET Image Process., 2022, 16: 3025−3038.
- 53.
Aghaei, N.; Akbarizadeh, G.; Kosarian, A. Osdes_net: Oil spill detection based on efficient_shuffle network using synthetic aperture radar imagery. Geocarto Int., 2022, 37: 13539−13560.
- 54.
Ghara, F.M.; Shokouhi, S.B.; Akbarizadeh, G. A new technique for segmentation of the oil spills from synthetic-aperture radar images using convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2022, 15: 8834−8844.
- 55.
Sun, Y.R.; Wang, Z.R.; Sun, X.; et al. SPAN: Strong scattering point aware network for ship detection and classification in large-scale SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2022, 15: 1188−1204.
- 56.
Zhu, Y.G.; Sun, X.; Diao, W.H.; et al. RFA-Net: Reconstructed feature alignment network for domain adaptation object detection in remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2022, 15: 5689−5703.
- 57.
Wang, B.; Wang, Z.R.; Sun, X.; et al. DMML-Net: Deep metametric learning for few-shot geographic object segmentation in remote sensing imagery. IEEE Trans. Geosci. Remote Sens., 2022, 60: 5611118.
- 58.
Kang, Y.Z.; Wang, Z.R.; Fu, J.M.; et al. SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images. IEEE Trans. Geosci. Remote Sens., 2022, 60: 5218317.
- 59.
Li, Y.; Yuan, Z.F.; Meng, Z.G.; et al. A unified brightness temperature features analysis framework for mapping mare basalt units using Chang’e-2 lunar microwave sounder (CELMS) data. Remote Sens., 2023, 15: 1910.