- 1.
Luckin, R. Machine Learning and Human Intelligence: The Future of Education for the 21st Century; UCL IOE Press, London, 27, July, 2018. doi:10.1177/14782103221117655
- 2.
Phelps, E.A, Emotion AND cognition: Insights from studies of the human amygdala. Annu. Rev. Psychol., 2006, 57: 27−53.
- 3.
Isaacowitz, D.M.; Charles, S.T.; Carstensen, L.L. Emotion and cognition. In The Handbook of Aging and Cognition; Salthouse, T.A., Ed.; Lawrence Erlbaum Associates Inc.: Mahwah, 2000; pp. 593–631.
- 4.
Jessica A.Sommerville. Social Cognition. Encyclopedia of Infant and Early Childhood Development, 2020, pp.196-206, Elsevier. doi: 10.1016/B978-0-12-809324-5.21640-4.
- 5.
Jian, M.W.; Zhang, W.Y.; Yu, H.; et al, Saliency detection based on directional patches extraction and principal local color contrast. J. Vis. Commun. Image Represent., 2018, 57: 1−11.
- 6.
Jian, M.W., Qi, Q., Dong, J.Y.; et al, Integrating QDWD with pattern distinctness and local contrast for underwater saliency detection. J. Vis. Commun. Image Represent., 2018, 53: 31−41.
- 7.
Jian, M.W.; Lam, K.M.; Dong, J.Y.; et al, Visual-patch-attention-aware saliency detection. IEEE Trans. Cybern., 2015, 45: 1575−1586.
- 8.
Schmid, U, Cognition and AI. Fachbereich 1 Künstliche Intelligenz der Gesellschaft für Informatik e.V., GI., 2008, 1: 5.
- 9.
Scherer, K.R. On the nature and function of emotion: A component process approach. In Approaches to Emotion; Scherer, K.R.; Ekman, P., Eds.; Psychology Press: New York, 1984; p. 26.
- 10.
Lazarus, R.S. The cognition-emotion debate: A bit of history. In Handbook of Cognition and Emotion; Dalgleish, T.; Power, M.J., Eds.; John Wiley & Sons: New York, 1999; pp. 3–19.
- 11.
Pessoa, L. The Cognitive-Emotional Brain: From Interactions to Integration; MIT Press: Cambridge, 2013.
- 12.
Okon-Singer, H.; Hendler, T.; Pessoa, L.; et al, The neurobiology of emotion–cognition interactions: Fundamental questions and strategies for future research. Front. Hum. Neurosci., 2015, 9: 58.
- 13.
Dolcos, F.; Katsumi, Y.; Moore, M.; et al, Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neurosci. Biobehav. Rev., 2020, 108: 559−601.
- 14.
Shackman, A.J.; Salomons, T.V.; Slagter, H.A.; et al, The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci., 2011, 12: 154−167.
- 15.
Young, M.P.; Scanneil, J.W.; Burns, G.A.P.C.; et al, Analysis of connectivity: Neural systems in the cerebral cortex. Rev. Neurosci., 1994, 5: 227−250.
- 16.
Pessoa, L, On the relationship between emotion and cognition. Nat. Rev. Neurosci., 2008, 9: 148−158.
- 17.
Martı́nez-Miranda, J.; Aldea, A, Emotions in human and artificial intelligence. Comput. Hum. Behav., 2005, 21: 323−341.
- 18.
Tao, J.H.; Tan, T.N. Affective computing: A review. In Proceedings of the 1st International Conference on Affective Computing and Intelligent Interaction, Beijing, China, October 22–24, 2005; Springer: Beijing, China, 2005; pp. 981–995. doi:10.1007/11573548_125
- 19.
Schuller, D.; Schuller, B.W, The age of artificial emotional intelligence. Computer, 2018, 51: 38−46.
- 20.
Saxena, A.; Khanna, A.; Gupta, D, Emotion recognition and detection methods: A comprehensive survey. J. Artif. Intell. Syst., 2020, 2: 53−79.
- 21.
Li, Y.T.; Wei, J.S.; Liu, Y.; et al. 2022, Deep learning for micro-expression recognition: A survey. IEEE Trans. Affect. Comput., 2022, 13: 2028−2046.
- 22.
Liu, Y.; Zhou, J.Z.; Li, X.; et al, Graph-based Facial Affect Analysis: A Review. IEEE Trans. Affect. Comput., 2022, 19: 1−20.
- 23.
Liu, Y.; Zhang, X.M.; Zhou, J.Z.; et al, SG-DSN: A Semantic Graph-based Dual-Stream Network for facial expression recognition. Neurocomputing, 2021, 462: 320−330.
- 24.
Chen, H.Y.; Liu, X.; Li, X.B.; et al. Analyze spontaneous gestures for emotional stress state recognition: A micro-gesture dataset and analysis with deep learning. In Proceedings of 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019; IEEE: Lille, France, 2019; pp. 1–8. doi:10.1109/FG.2019.8756513
- 25.
Liu, X.; Shi, H.L.; Chen, H.Y.; et al. iMiGUE: An identity-free video dataset for micro-gesture understanding and emotion analysis. In Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; IEEE: Nashville, USA, 2021; pp. 10631–10642. doi:10.1109/CVPR46437.2021.01049
- 26.
Koolagudi, S.G.; Rao, K.S, Emotion recognition from speech: A review. Int. J. Speech Technol., 2012, 15: 99−117.
- 27.
Zhou, Z.H.; Zhao, G.Y.; Hong, X.P.; et al, A review of recent advances in visual speech decoding. Image Vis. Comput., 2014, 32: 590−605.
- 28.
Yu, Z.T.; Li, X.B.; Zhao, G.Y, Facial-Video-Based Physiological Signal Measurement: Recent advances and affective applications. IEEE Signal Process. Mag., 2021, 38: 50−58.
- 29.
Shu, L.; Xie, J.Y.; Yang, M.Y.; et al, A review of emotion recognition using physiological signals. Sensors, 2018, 18: 2074.
- 30.
Li, X.B.; Cheng, S.Y.; Li, Y.T.; et al. 4DME: A spontaneous 4D micro-expression dataset with multimodalities. IEEE Trans. Affect. Comput. 2022, in press. doi:10.1109/TAFFC.2022.3182342
- 31.
Huang, X.H.; Kortelainen, J.; Zhao, G.Y.; et al, Multi-modal emotion analysis from facial expressions and electroencephalogram. Comput. Vis. Image Underst., 2016, 147: 114−124.
- 32.
Saleem, S.M.; Abdullah, A.; Ameen, S.Y.A.; et al, Multimodal emotion recognition using deep learning. J. Appl. Sci. Technol. Trends, 2021, 2: 52−58.
- 33.
Lisetti, C.L. Emotion synthesis: Some research directions. In Proceedings of the Working Notes of the AAAI Fall Symposium Series on Emotional and Intelligent: The Tangled Knot of Cognition, Orlando, FL, USA, October 22–24,1998; AAAI Press: Menlo Park, USA, 1998; pp. 109–115.
- 34.
Hudlicka, E, Guidelines for designing computational models of emotions. Int. J. Synth. Emotions (IJSE), 2011, 2: 26−79.
- 35.
Strömfelt, H.; Zhang, Y.; Schuller, B.W. 2017. Emotion-augmented machine learning: Overview of an emerging domain. In Proceedings of 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017; IEEE: San Antonio, USA, 2017; pp. 305–312. doi:10.1109/ACII.2017.8273617
- 36.
Khashman, A. A modified backpropagation learning algorithm with added emotional coefficients, IEEE Trans. Neural Netw., 2008, 19: 1896−1909.
- 37.
Hwang, K.; Chen, M. Big-Data Analytics for Cloud, IoT and Cognitive Computing; John Wiley & Sons: Hoboken, NJ, USA, 2017.
- 38.
Wang, Y.X, A cognitive informatics reference model of autonomous agent systems (AAS). Int. J. Cognit. Inf. Nat. Intell., 2009, 3: 1−16.
- 39.
Li, J.H.; Mei, C.L.; Xu, W.H.; et al. Concept learning via granular computing: A cognitive viewpoint. Inf. Sci. 2015, 298, 447–467. doi:10.1016/j.ins.2014.12.010
- 40.
Chen, M.; Herrera, F.; Hwang, K, Cognitive computing: Architecture, technologies and intelligent applications. IEEE Access, 2018, 6: 19774−19783.
- 41.
Gudivada, V.N, Cognitive computing: Concepts, architectures, systems, and applications. Handb. Stat., 2016, 35: 3−38.
- 42.
Sreedevi, A.G.; Harshitha, T.N.; Sugumaran, V.; et al. Application of cognitive computing in healthcare, cybersecurity, big data and IoT: A literature review. Inf. Process. Manage. 2022, 59, 102888. doi:10.1016/J.IPM.2022.102888
- 43.
Ferrucci, D.A, Introduction to “This is Watson”. IBM J. Res. Dev., 2012, 56: 1.1−1.5.
- 44.
Hurwitz, J.S.; Kaufman, M.; Bowles, A. Cognitive Computing and Big Data Analytics; John Wiley & Sons: Indianapolis, IN, USA, 2015.
- 45.
Fairclough, S.H.; Venables, L, Prediction of subjective states from psychophysiology: A multivariate approach. Biol. Psychol., 2006, 71: 100−110.
- 46.
Teixeira, T.; Wedel, M.; Pieters, R, Emotion-induced engagement in internet video advertisements. J. Mark. Res., 2012, 49: 144−159.
- 47.
Skinner, E.; Pitzer, J.; Brule, H. The role of emotion in engagement, coping, and the development of motivational resilience. In International Handbook of Emotions in Education; Pekrun, R.; Linnenbrink-Garcia, L., Eds.; Routledge: New York, 2014; pp. 331–347.
- 48.
Mathur, A.; Lane, N.D.; Kawsar, F. Engagement-aware computing: Modelling user engagement from mobile contexts. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; ACM: Heidelberg, Germany, 2016; pp. 622–633. doi:10.1145/2971648.2971760
- 49.
Renninger, K.A.; Hidi, S.E. The Power of Interest for Motivation and Engagement; Routledge: New York, 2015.
- 50.
Klie, L, IBM’s Watson brings cognitive computing to customer engagement. Speech Technol. Mag., 2014, 19: 38−42.
- 51.
Behera, R.K.; Bala, P.K.; Dhir, A, The emerging role of cognitive computing in healthcare: A systematic literature review. Int. J. Med. Inf., 2019, 129: 154−166.
- 52.
Bandura, A, Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis. Process., 1991, 50: 248−287.
- 53.
Schunk, D.H.; Greene, J.A. Historical, contemporary, and future perspectives on self-regulated learning and performance. In Handbook of Self-Regulation of Learning and Performance; Schunk, D.H.; Greene, J.A., Eds.; Routledge: New York, 2018; pp. 1–15. doi:10.4324/9781315697048-1
- 54.
McRae, K.; Gross, J.J, Emotion regulation. Emotion, 2020, 20: 1−9.
- 55.
- 56.
Azevedo, R.; Gašević, D, Analyzing multimodal multichannel data about self-regulated learning with advanced learning technologies: Issues and challenges. Comput. Hum. Behav., 2019, 96: 207−210.
- 57.
Wilson, R.A.; Keil, F.C. The MIT Encyclopedia of the Cognitive Sciences; A Bradford Book, West Yorkshire, UK, 2001.
- 58.
Forgas, J.P, Mood effects on decision making strategies. Aust. J. Psychol., 1989, 41: 197−214.
- 59.
Loewenstein, G.; Lerner, J.S. The role of affect in decision making. In Handbook of Affective Science; Davidson, R.; Goldsmith, H.; Scherer, K., Eds.; Oxford University Press: Oxford, 2003; pp. 619–642.
- 60.
Gliozzo, A.; Ackerson, C.; Bhattacharya, R.; et al.
Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started; IBM Redbooks, IBM Garage, United States,
2017. Available online:
https://www.redbooks.ibm.com/abstracts/sg248387.html (accessed on 6 November 2022).
- 61.
Iyengar, S.S.; Mukhopadhyay, S.; Steinmuller, C.; et al, Preventing future oil spills with software-based event detection. Computer, 2010, 43: 95−97.
- 62.
Commissiong, M.A. Student Engagement, Self-Regulation, Satisfaction, and Success in Online Learning Environments. Ph.D. Thesis, Walden University, Minneapolis, USA, 2020.
- 63.
Starkey, K.; Hatchuel, A.; Tempest, S, Management research and the new logics of discovery and engagement. J. Manage. Stud., 2009, 46: 547−558.
- 64.
Araujo, T.; Helberger, N.; Kruikemeier, S.; et al, In AI we trust? Perceptions about automated decision-making by artificial intelligence AI Soc., 2020, 35: 611−623.
- 65.
- 66.
Sagiroglu, S.; Sinanc, D. Big data: A review. In Proceedings of 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013; IEEE: San Diego, USA, 2013; pp. 42–47. doi:10.1109/CTS.2013.6567202
- 67.
Sarker, I.H, Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci., 2021, 2: 160.
- 68.
Peng, W.; Varanka, T.; Mostafa, A.; et al, Hyperbolic deep neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 44: 10023−10044.
- 69.
Li, Z.M.; Tian, W.W.; Li, Y.T.; et al. A more effective method for image representation: Topic model based on latent dirichlet allocation. In Proceedings of 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), Xi'an, China, 26–28 August 2015; IEEE: Xi'an, China, 2015; pp. 143–148. doi:10.1109/CADGRAPHICS.2015.19
- 70.
Jarrahi, M.H, Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz., 2018, 61: 577−586.
- 71.
Wyant, D.K.; Bingi, P.; Knight, J.R.; et al. DeTER framework: A novel paradigm for addressing cybersecurity concerns in mobile healthcare. In Research Anthology on Securing Medical Systems and Records; Information Resources Management Association, Ed.; IGI Global, Chocolate Ave. Hershey, PA 17033, USA, 2022; pp. 381–407. doi:10.4018/978-1-6684-6311-6.ch019
- 72.
Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; et al, Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 2020, 58: 82−115.
- 73.
Holzinger, A, Explainable AI and multi-modal causability in medicine. i-com, 2021, 19: 171−179.
- 74.
Ravindran, N.J.; Gopalakrishnan, P. Predictive analysis for healthcare sector using big data technology. In Proceedings of 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT), Bangalore, India, 16–18 August 2018; IEEE: Bangalore, India, 2018; pp. 326–331. doi:10.1109/ICGCIoT.2018.8753090
- 75.
Lin, S.J.; Hsu, M.F. Incorporated risk metrics and hybrid AI techniques for risk management. Neural Comput. Appl. 2017, 28, 3477–3489. doi:10.1007/s00521-016-2253-4
- 76.
Peeters, M.M.M.; van Diggelen, J.; van den Bosch, K.; et al, Hybrid collective intelligence in a human–AI society. AI Soc., 2021, 36: 217−238.
- 77.
Jobin, A.; Ienca, M.; Vayena, E, The global landscape of AI ethics guidelines. Nat. Mach. Intell., 2019, 1: 389−399.