2504000022
  • Open Access
  • Article
Modeling and Causality Analysis of Human Sensorimotor Control System Based on NVAR Method
  • Jiyu Tan 1, 2,   
  • Yurong Li 1, 2, *,   
  • Qiurong Xie 3,   
  • Xiaoling Wang 3

Received: 02 Sep 2023 | Accepted: 19 Oct 2023 | Published: 21 Dec 2023

Abstract

Neuromuscular disorders (such as stroke and spinal cord injuries) can lead to nerve damage that profoundly affects a patient's ability to control limb movements. Analyzing and modeling the human sensorimotor control system can establish a neurophysiological foundation for both fundamental research and clinical rehabilitation assessment. Electroencephalogram (EEG) signals provide insights into how the cerebral cortex regulates limb movements, while electromyogram (EMG) signals reveal how muscles respond to motor commands. Utilizing these signals, cortical-muscular models can be developed to facilitate the quantification and assessment of the human sensorimotor control system. This study proposes a method based on the nonlinear vector autoregression model and coiflets wavelet packet decomposition to perform multivariate time-frequency Granger causality analysis. The objective of this analysis is to compute the cortical-muscular causality matrix during elbow extension in stroke patients and construct a cortical-muscular causal network. The result reveals a frequency-dependent directed information flow pattern in the cortical-muscle causality matrix during elbow extension. Specifically, the GC values of EEG→EMG (down) and EMG→EEG (up) in the alpha and beta bands are significantly higher than those in the gamma band. The cortical-muscular causal network of stroke patients does not have small-world properties. The result indicates that the proposed method is able to characterize functional connections of brain myoelectric synchronization in different frequency bands within the time-frequency domain. It also uncovers the causal association that inherently exists in the human sensorimotor control system, providing a theoretical basis for further evaluation and quantification of the human sensorimotor control system.

Graphical Abstract

References 

  • 1.
    Shan, Y.Z.; Feng, H.Q.; Li, Z. Electrical stimulation for nervous system injury: Research progress and prospects. Acta Phys.-Chim. Sin., 2020, 36: 2005038. doi: https://doi.org/10.3866/PKU.WHXB202005038
  • 2.
    Filatova, O.G.; Yang, Y.; Dewald, J.P.A.; et al. Dynamic information flow based on EEG and diffusion MRI in stroke: A proof-of-principle study. Front. Neural Circuits 2018 , 12, 79. doi: https://doi.org/10.3389/fncir.2018.00079
  • 3.
    Lin, J.L.; Tian, J.; Jia, J. Study on the correlation between daily living activities and motor function of upper limbs and hands in elderly stroke patients. Geriatr. Health Care, 2020, 26: 362−366. doi: https://doi.org/10.3969/j.issn.1008-8296.2020.03.008
  • 4.
    Yokoyama, H.; Kaneko, N.; Ogawa, T.; et al. Cortical correlates of locomotor muscle synergy activation in humans: An electroencephalographic decoding study. iScience, 2019, 15: 623−639. doi: https://doi.org/10.1016/j.isci.2019.04.008
  • 5.
    Bourguignon, M.; Jousmäki, V.; Dalal, S.S.; et al. Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings. NeuroImage, 2019, 203: 116177. doi: https://doi.org/10.1016/j.neuroimage.2019.116177
  • 6.
    Nijhuis, P.; Keller, P.E.; Nozaradan, S.; et al. Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation. NeuroImage, 2021, 238: 118209. doi: https://doi.org/10.1016/j.neuroimage.2021.118209
  • 7.
    Chen, X.L.; Xie, P.; Zhang, Y.Y.; et al. Abnormal functional corticomuscular coupling after stroke. NeuroImage: Clin., 2018, 19: 147−159. doi: https://doi.org/10.1016/j.nicl.2018.04.004
  • 8.
    Lapenta, O.M.; Keller, P.E.; Nozaradan, S.; et al. Lateralised dynamic modulations of corticomuscular coherence associated with bimanual learning of rhythmic patterns. Sci. Rep., 2022, 12: 6271. doi: https://doi.org/10.1038/S41598-022-10342-5
  • 9.
    Witte, M.; Patino, L.; Andrykiewicz, A.; et al. Modulation of human corticomuscular beta-range coherence with low-level static forces. Eur. J. Neuroscience, 2007, 26: 3564−3570. doi: https://doi.org/10.1111/j.1460-9568.2007.05942.x
  • 10.
    Li, S.J.; Fan, M.X.; Yu, H.L.; et al. Gamma frequency band shift of contralateral corticomuscular synchronous oscillations with force strength for hand movement tasks. NeuroReport, 2020, 31: 338−345. doi: https://doi.org/10.1097/WNR.0000000000001409
  • 11.
    Venkat, V.P.B.; Chinara, S. Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal. J. Neurosci. Methods, 2021, 347: 108927. doi: https://doi.org/10.1016/j.jneumeth.2020.108927
  • 12.
    Zhu, F.F.; Li, Y.R.; Shi, Z.Y.; et al. TV-NARX and Coiflets WPT based time-frequency Granger causality with application to corticomuscular coupling in hand-grasping. Front. Neurosci., 2022, 16: 1014495. doi: https://doi.org/10.3389/fnins.2022.1014495
  • 13.
    Li, H.; Wang, Z.D.; Lan, C.B.; et al. A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection. IEEE Trans. Neural Netw. Learn. Syst. 2023 , in press.doi: https://doi.org/10.1109/TNNLS.2023.3295461
  • 14.
    Toda, H.; Phillips, P.C.B. Vector Autoregression and Causality; Yale University: Connecticut, 1991.
  • 15.
    Li, H.; Wang, Z.D.; Lan, C.B.; et al. A novel dynamic multiobjective optimization algorithm with hierarchical response system. IEEE Trans. Comput. Soc. Syst. 2023 , in press. doi: https://doi.org/10.1109/TCSS.2023.3293331
  • 16.
    Li, H.; Wu, P.S.; Zeng, N.Y.; et al. A survey on parameter identification, state estimation and data analytics for lateral flow immunoassay: From systems science perspective. Int. J. Syst. Sci., 2022, 53: 3556−3576. doi: https://doi.org/10.1080/00207721.2022.2083262
  • 17.
    Fang, J.Z.; Wang, Z.D.; Liu, W.B.; et al. A new particle swarm optimization algorithm for outlier detection: Industrial data clustering in wire arc additive manufacturing. IEEE Trans. Autom. Sci. Eng. 2022 , in press. doi:10.1109/TASE.2022.3230080.
  • 18.
    Samadi, S.Y.; Hajebi, M.; Farnoosh, R. A semiparametric approach for modelling multivariate nonlinear time series. Can. J. Statistics, 2019, 47: 668−687. doi: https://doi.org/10.1002/cjs.11518
  • 19.
    Dong, A.X.; Starr, A.; Zhao, Y.F. Neural network-based parametric system identification: A review. Int. J. Syst. Sci., 2023, 54: 2676−2688. doi: https://doi.org/10.1080/00207721.2023.2241957
  • 20.
    Marcinkevics, R.; Vogt, J.E. Interpretable models for granger causality using self-explaining neural networks. In Proceedings of the 9th International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021; OpenReview.net, 2021.
  • 21.
    Heaton, J. Introduction to Neural Networks with Java, 2nd ed.; Heaton Research, Inc: Missouri, 2008.
  • 22.
    Nicholson, W.B.; Matteson, D.S.; Bien, J. VARX-L: Structured regularization for large vector autoregressions with exogenous variables. Int. J. Forecast., 2017, 33: 627−651. doi: https://doi.org/10.1016/j.ijforecast.2017.01.003
  • 23.
    Bako, L. On sparsity-inducing methods in system identification and state estimation. Int. J. Robust Nonlinear Control, 2023, 33: 177−208. doi: https://doi.org/10.1002/rnc.5995
  • 24.
    Elmahdi, R.; Amed, N.Y.; Amin, M.B.M., et al. Comparative study between daubechies and coiflets wavelet decomposition mother families in feature extraction of BCI based on multiclass motor imagery discrimination. J. Clin. Eng., 2019, 44: 41−46. doi: https://doi.org/10.1097/JCE.0000000000000320
  • 25.
    Reineberg, A.E.; Banich, M.T. Functional connectivity at rest is sensitive to individual differences in executive function: A network analysis. Hum. Brain Mapp., 2016, 37: 2959−2975. doi: https://doi.org/10.1002/hbm.23219
  • 26.
    Redcay, E.; Moran, J.M.; Mavros, P.L.; et al. Intrinsic functional network organization in high-functioning adolescents with autism spectrum disorder. Front. Hum. Neurosci., 2013, 7: 573. doi: https://doi.org/10.3389/fnhum.2013.00573
  • 27.
    Li, G.; Luo, Y.D.; Zhang, Z.R.; et al. Effects of mental fatigue on small-world brain functional network organization. Neural Plast., 2019, 2019: 1716074. doi: https://doi.org/10.1155/2019/1716074
  • 28.
    Bin, S.; Sun, G.X.; Chen, C.C. Analysis of functional brain network based on electroencephalography and complex network. Microsyst. Technol., 2021, 27: 1525−1533. doi: https://doi.org/10.1007/s00542-019-04424-0
  • 29.
    Liu, M.M.; Xu, G.Z.; Yu, L.H.; et al. Effects of anodal transcranial direct current stimulation on brain functional network in stroke patients. Chin. J. Biomed. Eng. 2023 , 42, 119–123. (In Chinese).
  • 30.
    Liu, J.B.; Tan, G.S.; Sheng, Y.X.; et al. Multiscale transfer spectral entropy for quantifying corticomuscular interaction. IEEE J. Biomed. Health Inform., 2021, 25: 2281−2292. doi: https://doi.org/10.1109/JBHI.2020.3032979
  • 31.
    Liang, T.; Zhang, Q.Y.; Liu, X.G.; et al. Identifying bidirectional total and non-linear information flow in functional corticomuscular coupling during a dorsiflexion task: A pilot study. J. Neuroeng. Rehabil., 2021, 18: 74. doi: https://doi.org/10.1186/S12984-021-00872-W
  • 32.
    Xi, X.G.; Ding, J.S.; Wang, J.H.; et al. Analysis of functional corticomuscular coupling based on multiscale transfer spectral entropy. IEEE J. Biomed. Health Inform., 2022, 26: 5085−5096. doi: https://doi.org/10.1109/JBHI.2022.3193984
  • 33.
    Suárez, L.E.; Markello, R.D.; Betzel, R.F.; et al. Linking structure and function in macroscale brain networks. Trends Cognit. Sci., 2020, 24: 302−315. doi: https://doi.org/10.1016/j.tics.2020.01.008
Share this article:
How to Cite
Tan, J.; Li, Y.; Xie, Q.; Wang, X. Modeling and Causality Analysis of Human Sensorimotor Control System Based on NVAR Method. International Journal of Network Dynamics and Intelligence 2023, 2 (4), 100014. https://doi.org/10.53941/ijndi.2023.100014.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2023 by the authors.