- 1.
Olsen, S.; Zhang, J.W.; Liang, K.F.; et al. An artificial intelligence that increases simulated brain–computer interface performance. J. Neural Eng., 2021, 18: 046053.
- 2.
Singh, A.; Hussain, A.A.; Lal, S.; et al. A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 2021, 21: 2173.
- 3.
Zabcikova, M.; Koudelkova, Z.; Jasek, R.; et al. Recent advances and current trends in brain-computer interface research and their applications. Int. J. Dev. Neurosci., 2022, 82: 107−123.
- 4.
Ahn, M.; Cho, H.; Ahn, S.; et al. User’s self-prediction of performance in motor imagery brain-computer interface. Front. Hum. Neurosci., 2018, 12: 59.
- 5.
Leeuwis, N.; Yoon, S.; Alimardani, M. Functional connectivity analysis in motor-imagery brain computer interfaces. Front. Human Neurosci., 2021, 15: 732946.
- 6.
Wan, Z.T.; Yang, R.; Huang, M.; et al. EEG fading data classification based on improved manifold learning with adaptive neighborhood selection. Neurocomputing, 2022, 482: 186−196.
- 7.
Wang, H.T.; Li, T.; Bezerianos, A.; et al. The control of a virtual automatic car based on multiple patterns of motor imagery BCI. Med. Biol. Eng. Comput., 2019, 57: 299−309.
- 8.
Yu, N.X.; Yang, R.; Huang, M.J. Deep common spatial pattern based motor imagery classification with improved objective function. Int. J. Network Dyn. Intell., 2022, 1: 73−84.
- 9.
Formaggio, E.; Masiero, S.; Bosco, A.; et al. Quantitative EEG evaluation during robot-assisted foot movement. IEEE Trans. Neural Syst. Rehabilit. Eng., 2016, 25: 1633−1640.
- 10.
Kline, A.; Ghiroaga, C.G.; Pittman, D.; et al. EEG differentiates left and right imagined lower limb movement. Gait Post., 2021, 84: 148−154.
- 11.
Tariq, M.; Trivailo, P.M.; Simic, M. EEG-based BCI control schemes for lower-limb assistive-robots. Front. Human Neurosci., 2018, 12: 312.
- 12.
Dai, Y.X.; Wang, X.; Zhang, P.B.; et al. Sparsity constrained differential evolution enabled feature-channel-sample hybrid selection for daily-life EEG emotion recognition. Multimed. Tools Appl., 2018, 77: 21967−21994.
- 13.
Geng, H.; Wang, Z.D.; Chen, Y.; et al. Multi-sensor filtering fusion with parametric uncertainties and measurement censoring: Monotonicity and boundedness. IEEE Trans. Signal Process., 2021, 69: 5875−5890.
- 14.
Li, Q.; Wang, Z.D.; Shen, B.; et al. A resilient approach to recursive distributed filtering for multirate systems over sensor networks with time-correlated fading channels. IEEE Trans. Signal Inf. Process. Over Networks, 2021, 7: 636−647.
- 15.
Nakanishi, M.; Wang, Y.T.; Wei, C.S.; et al. Facilitating calibration in high-speed BCI spellers via leveraging cross-device shared latent responses. IEEE Trans. Biomed. Eng., 2020, 67: 1105−1113.
- 16.
Strypsteen, T.; Bertrand, A. End-to-end learnable EEG channel selection for deep neural networks with gumbel-softmax. J. Neural Eng., 2021, 18: 0460a9.
- 17.
Qi, F.F.; Wu, W.; Yu, Z.L.; et al. Spatiotemporal-filtering-based channel selection for single-trial EEG classification. IEEE Trans. Cybernet., 2021, 51: 558−567.
- 18.
Gurve, D.; Delisle-Rodriguez, D.; Romero-Laiseca, M.; et al. Subject-specific EEG channel selection using non-negative matrix factorization for lower-limb motor imagery recognition. J. Neural Eng., 2020, 17: 026029.
- 19.
Gaur, P.; McCreadie, K.; Pachori, R.B.; et al. An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation. Biomed. Signal Process. Control, 2021, 68: 102574.
- 20.
Homan, R.W.; Herman, J.; Purdy, P. Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol., 1987, 66: 376−382.
- 21.
Hsu, W.C.; Lin, L.F.; Chou, C.W.; et al. EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. Int. J. Fuzzy Syst., 2017, 19: 566−579.
- 22.
Liu, Y.H.; Lin, L.F.; Chou, C.W.; et al. Analysis of electroencephalography event-related desynchronisation and synchronisation induced by lower-limb stepping motor imagery. J. Med. Biol. Eng., 2019, 39: 54−69.
- 23.
Brissenden, J.A.; Tobyne, S.M.; Osher, D.E.; et al. Topographic cortico-cerebellar networks revealed by visual attention and working memory. Curr. Biol., 2018, 28: 3364−3372.e5.
- 24.
Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, walking, talking: Integratory motor and cognitive brain function. Front. Public Health, 2016, 4: 94.
- 25.
Raffin, E.; Mattout, J.; Reilly, K.T.; et al. Disentangling motor execution from motor imagery with the phantom limb. Brain, 2012, 135: 582−595.
- 26.
Ren, S.X.; Wang, W.Q.; Hou, Z.G.; et al. Enhanced motor imagery based brain-computer interface via FES and VR for lower limbs. IEEE Trans. Neural Syst. Rehabilit. Eng., 2020, 28: 1846−1855.
- 27.
Brunner, C.; Delorme, A.; Makeig, S. EEGLAB–an open source matlab toolbox for electrophysiological research. Biomed. Tech. 2013, 58 Suppl 1, SI-1-Track-G, 000010151520134182. doi: 10.1515/bmt-2013-4182
- 28.
Geng, H.; Liu, H.J.; Ma, L.F.; et al. Multi-sensor filtering fusion meets censored measurements under a constrained network environment: Advances, challenges and prospects. Int. J. Syst. Sci., 2021, 52: 3410−3436.
- 29.
Mao, J.Y.; Sun, Y.; Yi, X.J.; et al. Recursive filtering of networked nonlinear systems: A survey. Int. J. Syst. Sci., 2021, 52: 1110−1128.
- 30.
Debener, S.; Thorne, J.; Schneider, T.R.; et al. Using ICA for the analysis of multi-channel EEG data. In Simultaneous EEG and fMRI: Recording, Analysis, and Application; Ullsperger, M.; Debener, S., Eds.; Oxford University Press: Oxford, 2010; pp. 121–134.
- 31.
He, H.; Wu, D.R. Transfer learning for brain–computer interfaces: A Euclidean space data alignment approach. IEEE Trans. Biomed. Eng., 2020, 67: 399−410.
- 32.
Yang, B.H.; He, M.Y.; Liu, Y.Y.; et al. Multi-class feature extraction based on common spatial patterns of multi-band cross filter in BCIs. In International Computer Science Conference, Shanghai, China, 27–30 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 399–408. doi: 10.1007/978-3-642-34381-0_46
- 33.
Tan, C.Q.; Sun, F.C.; Kong, T.; et al. A survey on deep transfer learning. In 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October, 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 270–279. doi: 10.1007/978-3-030-01424-7_27
- 34.
Tan, C.Q.; Sun, F.C.; Zhang, W.C. Deep transfer learning for EEG-based brain computer interface. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE: New York, 2018; pp. 916–920. doi: 10.1109/ICASSP.2018.8462115
- 35.
Völker, M.; Schirrmeister, R.T.; Fiederer, L.D.J.; et al. Deep transfer learning for error decoding from non-invasive EEG. In 2018 6th International Conference on Brain-Computer Interface (BCI), Gangwon, Korea (South), 15–17 January 2018; IEEE: New York, 2018; pp. 1–6. doi: 10.1109/IWW-BCI.2018.8311491
- 36.
Wan, Z.T.; Yang, R.; Huang, M.J.; et al. A review on transfer learning in EEG signal analysis. Neurocomputing, 2021, 421: 1−14.
- 37.
Zhao, G.Y.; Li, Y.T.; Xu, Q.R. From emotion AI to cognitive AI. Int. J. Network Dyn. Intell., 2022, 1: 65−72.
- 38.
Deepak, S.; Ameer, P.M. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med., 2019, 111: 103345.
- 39.
Pahar, M.; Klopper, M.; Warren, R.; et al. COVID-19 detection in cough, breath and speech using deep transfer learning and bottleneck features. Comput. Biol. Med., 2022, 141: 105153.
- 40.
Wang, C.; Wang, Z.D.; Liu, W.B.; et al. A novel deep offline-to-online transfer learning framework for pipeline leakage detection with small samples. IEEE Trans. Instrum. Meas., 2022, 72: 3503913.
- 41.
Dehghani, M.; Mobaien, A.; Boostani, R. A deep neural network-based transfer learning to enhance the performance and learning speed of BCI systems. Brain-Comput. Interfaces, 2021, 8: 14−25.
- 42.
Lu, B.; Song, B.Y.; Xu, L. Human face recognition based on convolutional neural network and augmented dataset. Syst. Sci. Control Eng., 2021, 9: 29−37.
- 43.
Wang, X.Y.; Yang, R.; Huang, M.J. An unsupervised deep-transfer-learning-based motor imagery EEG classification scheme for brain–computer interface. Sensors, 2022, 22: 2241.
- 44.
Zeng, N.Y.; Wang, Z.D.; Zhang, H.; et al. An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips. IEEE Trans. Nanotechnol., 2019, 18: 819−829.
- 45.
Zhang, B.C.; Wang, W.N.; Xiao, Y.T.; et al. Cross-subject seizure detection in EEGs using deep transfer learning. Comput. Math. Methods Med., 2020, 2020: 7902072.
- 46.
Bagherzadeh, S.; Shahabi, M.S.; Shalbaf, A. Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal. Comput. Biol. Med., 2022, 146: 105570.
- 47.
Ding, Y.L.; Fu, M.H.; Luo, P.; et al. Network learning for biomarker discovery. Int. J. Network Dyn. Intell., 2023, 2: 51−65.
- 48.
Khademi, Z.; Ebrahimi, F.; Kordy, H.M. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Comput. Biol. Med., 2022, 143: 105288.
- 49.
Li, X.; Li, M.L.; Yan, P.F.; et al. Deep learning attention mechanism in medical image analysis: Basics and beyonds. Int. J. Network Dyn. Intell., 2023, 2: 93−116.
- 50.
Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; et al. Real-time sensing and fault diagnosis for transmission lines. Int. J. Network Dyn. Intell., 2022, 1: 36−47.
- 51.
Alicja, M.; Maciej, S. Can AI see bias in X-ray images. Int. J. Network Dyn. Intell., 2022, 1: 48−64.
- 52.
Wei, M.N.; Yang, R.; Huang, M.J. Motor imagery EEG signal classification based on deep transfer learning. In 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 7–9 June 2021; IEEE: New York, 2021; pp 85–90. doi: 10.1109/CBMS52027.2021.00083
- 53.
Cheng, H.J.; Wang, Z.D.; Wei, Z.H.; et al. On adaptive learning framework for deep weighted sparse autoencoder: A multiobjective evolutionary algorithm. IEEE Trans. Cybern., 2020, 52: 3221−3231.
- 54.
Liang, C.M.; Li, Y.W.; Liu, Y.H.; et al. Segmentation and weight prediction of grape ear based on SFNet-ResNet18. Syst. Sci. Control Eng., 2022, 10: 722−732.
- 55.
Morid, M.A.; Borjali, A.; Del Fiol, G. A scoping review of transfer learning research on medical image analysis using ImageNet. Comput. Biol. Med., 2021, 128: 104115.
- 56.
Sun, J.Y.; Wang, Z.D.; Yu, H.; et al. Two-stage deep regression enhanced depth estimation from a single RGB image. IEEE Trans. Emerg. Top. Comput., 2022, 10: 719−727.