- 1.
Pizzuti, C. Evolutionary computation for community detection in networks: A review. IEEE Trans. Evol. Comput., 2018, 22: 464−483.
- 2.
Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, 1975.
- 3.
Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag., 2006, 1: 28−39.
- 4.
Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; IEEE: Nagoya, 1995; pp. 39–43. doi: 10.1109/MHS.1995.494215
- 5.
Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, Perth, Australia, 27 November 1995–1 December; IEEE: Perth, 1995; pp. 1942–1948. doi: 10.1109/ICNN.1995.488968
- 6.
Del Valle, Y.; Venayagamoorthy, G.K.; Mohagheghi, S.; et al. Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput., 2008, 12: 171−195.
- 7.
Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst., 2015, 149: 153−165.
- 8.
Azab, M. Optimal power point tracking for stand-alone PV system using particle swarm optimization. In Proceedings of the 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2010; IEEE: Bari, 2010; pp. 969–973. doi: 10.1109/ISIE.2010.5637061
- 9.
Braik, M.; Sheta, A.F.; Ayesh, A. Image enhancement using particle swarm optimization. In Proceedings of the World Congress on Engineering, London, UK, 2–4 July, 2007; World Congress on Engineering: London, 2007; pp. 696–701.
- 10.
Niu, T.; Zhang, L.; Zhang, B.; et al. PSO-Markov residual correction method based on Verhulst-Fourier prediction model. Syst. Sci. Control Eng, 2021, 9: 32−43.
- 11.
Janson, S.; Middendorf, M. A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst., Man, Cybern., Part B (Cyberne.), 2005, 35: 1272−1282.
- 12.
Niknam, T.; Amiri, B.; Olamaei, J.; et al. An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. J. Zhejiang Univ. -Sci. A, 2009, 10: 512−519.
- 13.
Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 2004, 8: 240−255.
- 14.
Shi, Y.H.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the 7th International Conference on Evolutionary Programming, San Diego, USA, 25–27 March 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 591–600. doi: 10.1007/BFb0040810
- 15.
Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation, Washington, USA, 6–9 July 1999; IEEE: Washington, 1999; pp. 1945–1950. doi: 10.1109/CEC.1999.785511
- 16.
Suganthan, P.N. Particle swarm optimiser with neighbourhood operator. In Proceedings of the 1999 Congress on Evolutionary Computation, Washington, USA, 06–09 July 1999; IEEE: Washington, 1999; pp. 1958–1962. doi: 10.1109/CEC.1999.785514
- 17.
Guo, J.; Tang, S.J. An improved particle swarm optimization with re-initialization mechanism. In Proceedings of the 2009 International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2009; IEEE: Hangzhou, 2009; pp. 437–441. doi: 10.1109/IHMSC.2009.117
- 18.
Tang, Y.; Wang, Z.D.; Fang, J.A. Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Syst. Appl., 2011, 38: 2523−2535.
- 19.
Wei, L.X.; Li, X.; Fan, R. A new multi-objective particle swarm optimisation algorithm based on R2 indicator selection mechanism. Int. J. Syst. Sci., 2019, 50: 1920−1932.
- 20.
Xu, L.; Song, B.Y.; Cao, M.Y. An improved particle swarm optimization algorithm with adaptive weighted delay velocity. Syst. Sci. Control Eng., 2021, 9: 188−197.
- 21.
Zhan, Z.H.; Zhang, J.; Li, Y.; et al. Adaptive particle swarm optimization. IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), 2009, 39: 1362−1381.
- 22.
Liu, W.B.; Wang, Z.D.; Liu, X.H.; et al. A novel particle swarm optimization approach for patient clustering from emergency departments. IEEE Trans. Evol. Comput., 2019, 23: 632−644.
- 23.
Zeng, N.Y.; Wang, Z.D.; Zhang, H.; et al. A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cognit. Comput., 2016, 8: 143−152.
- 24.
Zeng, N.Y.; Wang, Z.D.; Liu, W.B.; et al. A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Trans. Cybern., 2022, 52: 9290−9301.
- 25.
Stacey, A.; Jancic, M.; Grundy, I. Particle swarm optimization with mutation. In Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, Australia, 8–12 December 2003; IEEE: Canberra, 2003; pp. 1425–1430. doi: 10.1109/CEC.2003.1299838
- 26.
Zeng, N.Y.; Hung, Y.S.; Li, Y.R.; et al. A novel switching local evolutionary PSO for quantitative analysis of lateral flow immunoassay. Expert Syst. Appl., 2014, 41: 1708−1715.
- 27.
Huang, H.C. FPGA-based parallel metaheuristic PSO algorithm and its application to global path planning for autonomous robot navigation. J. Intell. Robot. Syst., 2014, 76: 475−488.
- 28.
Ishaque, K.; Salam, Z.; Shamsudin, A. Application of particle swarm optimization for maximum power point tracking of PV system with direct control method. In Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011; IEEE: Melbourne, 2011; pp. 1214–1219. doi: 10.1109/IECON.2011.6119482
- 29.
Rahimi, A.; Dev Kumar, K.; Alighanbari, H. Particle swarm optimization applied to spacecraft reentry trajectory. J. Guid., Control, Dyn., 2013, 36: 307−310.
- 30.
Zhao, B.; Cao, Y.J. Multiple objective particle swarm optimization technique for economic load dispatch. J. Zhejiang Univ.-Sci. A, 2005, 6: 420−427.
- 31.
Kao, Y.T.; Zahara, E.; Kao, I.W. A hybridized approach to data clustering. Expert Syst. Appl., 2008, 34: 1754−1762.
- 32.
Kennedy, J. The particle swarm: Social adaptation of knowledge. In Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, USA, 13–16 April 1997; IEEE: Indianapolis, 1997; pp. 303–308. doi: 10.1109/ICEC.1997.592326
- 33.
Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, USA, 4–9 May 1998; IEEE: Anchorage, 1998; pp. 69–73. doi: 10.1109/ICEC.1998.699146
- 34.
Liang, J.J.; Qin, A.K.; Suganthan, P.N.; et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput., 2006, 10: 281−295.
- 35.
Bansal, J.C.; Singh, P.K.; Saraswat, M.; et al. Inertia weight strategies in particle swarm optimization. In Proceedings of the 2011 Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 19–21 October 2011; IEEE: Salamanca, 2011; pp. 633–640. doi: 10.1109/NaBIC.2011.6089659
- 36.
Xin, J.B.; Chen, G.M.; Hai, Y.B. A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April 2009; IEEE: Sanya, 2009; pp. 505–508. doi: 10.1109/CSO.2009.420
- 37.
Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res., 2006, 33: 859−871.
- 38.
- 39.
Malik, R.F.; Rahman, T.A.; Hashim, S.Z.M.; et al. New particle swarm optimizer with sigmoid increasing inertia weight. Int. J. Comput. Sci. Secur., 2007, 1: 35−44.
- 40.
Gao, Y.L.; An, X.H.; Liu, J.M. A particle swarm optimization algorithm with logarithm decreasing inertia weight and chaos mutation. In Proceedings of the 2008 International Conference on Computational Intelligence and Security, Suzhou, China, 13–17 December 2008; IEEE: Suzhou, 2008; pp. 61–65. doi: 10.1109/CIS.2008.183
- 41.
Eberhart, R.C.; Shi, Y.H. Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea (South), 27–30 May 2001; IEEE: Seoul, 2001; pp. 94–100. doi: 10.1109/CEC.2001.934376
- 42.
Al-Hassan, W.; Fayek, M.B.; Shaheen, S.I. PSOSA: An optimized particle swarm technique for solving the urban planning problem. In Proceedings of the 2006 International Conference on Computer Engineering and Systems, Cairo, Egypt, 5–7 November 2006; IEEE: Cairo, 2006; pp. 401–405. doi: 10.1109/ICCES.2006.320481
- 43.
Feng, Y.; Teng, G.F.; Wang, A.X.; et al. Chaotic inertia weight in particle swarm optimization. In Proceedings of the 2nd International Conference on Innovative Computing, Informatio and Control, Kumamoto, Japan, 5–7 September 2007; IEEE: Kumamoto, 2007; p. 475. doi: 10.1109/ICICIC.2007.209
- 44.
Park, J.B.; Jeong, Y.W.; Shin, J.R.; et al. An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans. Power Syst., 2010, 25: 156−166.
- 45.
Shi, Y.H.; Eberhart, R.C. Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea (South), 27–30 May 2001; IEEE: Seoul, 2001; pp. 101–106. doi: 10.1109/CEC.2001.934377
- 46.
Clerc, M.; Kennedy, J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput., 2002, 6: 58−73.
- 47.
Tsai, C.Y.; Kao, I.W. Particle swarm optimization with selective particle regeneration for data clustering. Expert Syst. Appl., 2011, 38: 6565−6576.
- 48.
Guo, W.Z.; Chen, G.L.; Feng, X. A new strategy of acceleration coefficients for particle swarm optimization. In Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design, Nanjing, China, 3–5 May 2006; IEEE: Nanjing, 2006; pp. 1–5. doi: 10.1109/CSCWD.2006.253100
- 49.
Jordehi, A.R. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules. Energy Convers. Manage., 2016, 129: 262−274.
- 50.
Bao, G.Q.; Mao, K.F. Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, China, 19–23 December 2009; IEEE: Guilin, 2009; pp. 2134–2139. doi: 10.1109/ROBIO.2009.5420504
- 51.
Chen, K.; Zhou, F.Y.; Wang, Y.G.; et al. An ameliorated particle swarm optimizer for solving numerical optimization problems. Appl. Soft Comput., 2018, 73: 482−496.
- 52.
Kundu, R.; Das, S.; Mukherjee, R.; et al. An improved particle swarm optimizer with difference mean based perturbation. Neurocomputing, 2014, 129: 315−333.
- 53.
Tian, D.P.; Zhao, X.F.; Shi, Z.Z. Chaotic particle swarm optimization with sigmoid-based acceleration coefficients for numerical function optimization. Swarm Evol. Comput., 2019, 51: 100573.
- 54.
Liu, W.B.; Wang, Z.D.; Yuan, Y.; et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Trans. Cybern., 2021, 51: 1085−1093.
- 55.
Chen, K.; Zhou, F.Y.; Yin, L.; et al. A hybrid particle swarm optimizer with sine cosine acceleration coefficients. Inf. Sci., 2018, 422: 218−241.
- 56.
Liu, W.B.; Wang, Z.D.; Zeng, N.Y.; et al. A novel randomised particle swarm optimizer. Int. J. Mach. Learn. Cybern., 2021, 12: 529−540.
- 57.
Yamaguchi, T.; Yasuda, K. Adaptive particle swarm optimization; self-coordinating mechanism with updating information. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, China, 8–11 October 2006; IEEE: Taipei, China, 2006; pp. 2303–2308. doi: 10.1109/ICSMC.2006.385206
- 58.
Aziz, N.A.A.; Ibrahim, Z.; Mubin, M.; et al. Improving particle swarm optimization via adaptive switching asynchronous – synchronous update. Appl. Soft Comput., 2018, 72: 298−311.
- 59.
Binkley, K.J.; Hagiwara, M. Balancing exploitation and exploration in particle swarm optimization: Velocity-based reinitialization. Inf. Media Technol., 2008, 3: 103−111.
- 60.
Cheng, S.; Shi, Y.H.; Qin, Q.D. Promoting diversity in particle swarm optimization to solve multimodal problems. In Proceedings of the 18th International Conference on Neural Information Processing, Shanghai, China, 13–17 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 228–237. doi: 10.1007/978-3-642-24958-7_27
- 61.
- 62.
Zeng, N.Y.; Wang, Z.D.; Li, Y.R.; et al. A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models. IEEE/ACM Trans. Comput. Biol. Bioinf., 2012, 9: 321−329.
- 63.
Song, B.Y.; Wang, Z.D.; Zou, L. On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cognit. Comput., 2017, 9: 5−17.
- 64.
Song, B.Y.; Wang, Z.D.; Zou, L.; et al. A new approach to smooth global path planning of mobile robots with kinematic constraints. Int. J. Mach. Learn. Cybern., 2019, 10: 107−119.
- 65.
Pires, E.J.S.; Machado, J.A.T.; De Moura Oliveira, P.B.; et al. Particle swarm optimization with fractional-order velocity. Nonlinear Dyn., 2010, 61: 295−301.
- 66.
Song, B.Y.; Wang, Z.D.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput., 2021, 100: 106960.
- 67.
- 68.
Rada-Vilela, J.; Zhang, M.J.; Seah, W. A performance study on synchronicity and neighborhood size in particle swarm optimization. Soft Comput., 2013, 17: 1019−1030.
- 69.
Kennedy, J. Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, USA, 16–19 July 2000; IEEE: La Jolla, 2000; pp. 1507–1512. doi: 10.1109/CEC.2000.870832
- 70.
Clerc, M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation, Washington, USA, 6–9 July 1999; IEEE: Washington, 1999; pp. 1951–1957. doi: 10.1109/CEC.1999.785513
- 71.
Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, USA, 16–19 July 2000; IEEE: La Jolla, 2000; pp. 84–88. doi: 10.1109/CEC.2000.870279
- 72.
Van Den Bergh, F.; Engelbrecht, A.P. A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput., 2004, 8: 225−239.
- 73.
Das, S.; Abraham, A.; Konar, A. Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognit. Lett., 2008, 29: 688−699.
- 74.
Zhang, Y.C.; Xiong, X.; Zhang, Q.D. An improved self-adaptive PSO algorithm with detection function for multimodal function optimization problems. Math. Probl. Eng., 2013, 2013: 716952.
- 75.
Sun, J.; Feng, B.; Xu, W.B. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 Congress on Evolutionary Computation, Portland, USA, 19–23 June 2004; IEEE: Portland, 2004; pp. 325–331. doi: 10.1109/CEC.2004.1330875
- 76.
Sun, J.; Xu, W.B.; Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004; IEEE: Singapore, 2004; pp. 111–116. doi: 10.1109/ICCIS.2004.1460396
- 77.
Eberhart, R.C.; Simpson, P.K.; Dobbins, R.W. Computational Intelligence PC Tools; Academic Press Professional: Boston, 1996.
- 78.
Kennedy, J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In Proceedings of the 1999 Congress on Evolutionary Computation, Washington, USA, 6–9 July 1999; IEEE: Washington, 1999; pp. 1931–1938. doi: 10.1109/CEC.1999.785509
- 79.
Kennedy, J.; Mendes, R. Population structure and particle swarm performance. In Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, USA, 12–17 May 2002; IEEE: Honolulu, 2002; pp. 1671–1676. doi: 10.1109/CEC.2002.1004493
- 80.
Mendes, R.; Kennedy, J.; Neves, J. The fully informed particle swarm: Simpler, maybe better. IEEE Trans. Evol. Comput., 2004, 8: 204−210.
- 81.
Peram, T.; Veeramachaneni, K.; Mohan, C.K. Fitness-distance-ratio based particle swarm optimization. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, USA, 26–26 April 2003; IEEE: Indianapolis, 2003; pp. 174–181. doi: 10.1109/SIS.2003.1202264
- 82.
Liang, J.J.; Suganthan, P.N. Dynamic multi-swarm particle swarm optimizer. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, USA, 8–10 June 2005; IEEE: Pasadena, 2005; pp. 124–129. doi: 10.1109/SIS.2005.1501611
- 83.
Arani, B.O.; Mirzabeygi, P.; Panahi, M.S. An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol. Comput., 2013, 11: 1−15.
- 84.
Bird, S.; Li, X.D. Adaptively choosing niching parameters in a PSO. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, USA, 8–12 July 2006; ACM: Seattle, 2006; pp. 3–10. doi: 10.1145/1143997.1143999
- 85.
- 86.
Li, X.D. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, USA, June 26–30 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 105–116. doi: 10.1007/978-3-540-24854-5_10
- 87.
Qu, B.Y.; Suganthan, P.N.; Das, S. A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput., 2013, 17: 387−402.
- 88.
Premalatha, K.; Natarajan, A.M. Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. Math., 2009, 2: 597−608.
- 89.
Angeline, P.J. Using selection to improve particle swarm optimization. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, USA, 4–9 May 1998; IEEE: Anchorage, 1998; pp. 84–89. doi: 10.1109/ICEC.1998.699327
- 90.
Andrews, P.S. An investigation into mutation operators for particle swarm optimization. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, Canada, 16–21 July 2006; IEEE: Vancouver, 2006; pp. 1044–1051. doi: 10.1109/CEC.2006.1688424
- 91.
Dumitrescu, D.; Lazzerini, B.; Jain, L.C.; et al. Evolutionary Computation; CRC Press: Boca Raton, 2000. doi: 10.1201/9781482273960
- 92.
Higashi, N.; Iba, H. Particle swarm optimization with Gaussian mutation. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, USA, 26–26 April 2003; IEEE: Indianapolis, 2003; pp. 72–79. doi: 10.1109/SIS.2003.1202250
- 93.
Esquivel, S.C.; Coello, C.A.C. On the use of particle swarm optimization with multimodal functions. In Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, Australia, 8–12 December 2003; IEEE: Canberra, 2003; pp. 1130–1136. doi: 10.1109/CEC.2003.1299795
- 94.
Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin, 1996. doi: 10.1007/978-3-662-03315-9
- 95.
Jiang, B.; Wang, N.; He, X.X. Asynchronous particle swarm optimizer with relearning strategy. In Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011; IEEE: Melbourne, 2011; pp. 2341–2346. doi: 10.1109/IECON.2011.6119675
- 96.
Devicharan, D.; Mohan, C.K. Particle swarm optimization with adaptive linkage learning. In Proceedings of the 2004 Congress on Evolutionary Computation, Portland, USA, 19–23 June 2004; IEEE: Portland, 2004; pp. 530–535. doi: 10.1109/CEC.2004.1330902
- 97.
Chen, Y.P.; Peng, W.C.; Jian, M.C. Particle swarm optimization with recombination and dynamic linkage discovery. IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), 2007, 37: 1460−1470.
- 98.
Lovbjerg, M.; Rasmussen, T.K.; Krink, T. Hybrid particle swarm optimiser with breeding and subpopulations. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco, USA, 7–11 July 2001; Morgan Kaufmann Publishers Inc.: San Francisco, 2001; pp. 469–476.
- 99.
Wang, H.; Wu, Z.J.; Liu, Y.; et al. Particle swarm optimization with a novel multi-parent crossover operator. In Proceedings of the 2008 4th International Conference on Natural Computation, Jinan, China, 18–20 October 2008; IEEE: Jinan, 2008; pp. 664–668. doi: 10.1109/ICNC.2008.643
- 100.
Engelbrecht, A.P. Particle swarm optimization with discrete crossover. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; IEEE: Cancun, 2013; pp. 2457–2464. doi: 10.1109/CEC.2013.6557864
- 101.
Niknam, T.; Amiri, B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput., 2010, 10: 183−197.
- 102.
Niknam, T. A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl. Energy, 2010, 87: 327−339.
- 103.
Atyabi, A.; Powers, D. Review of classical and heuristic-based navigation and path planning approaches. Int. J. Adv. Comput. Technol., 2013, 5: 14.
- 104.
Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci., 2012, 7: 1314−1320.
- 105.
Xu, L.; Song, B.Y.; Cao, M.Y. A new approach to optimal smooth path planning of mobile robots with continuous-curvature constraint. Syst. Sci. Control Eng., 2021, 9: 138−149.
- 106.
Zeng, N.Y.; Zhang, H.; Chen, Y.P.; et al. Path planning for intelligent robot based on switching local evolutionary PSO algorithm. Assem. Autom., 2016, 36: 120−126.
- 107.
Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; et al. Intelligent Bézier curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Comput., 2019, 22: 4745−4766.
- 108.
Pugh, J.; Martinoli, A.; Zhang, Y. Particle swarm optimization for unsupervised robotic learning. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, USA, 8–10 June 2005; IEEE: Pasadena, 2005; pp. 92–99. doi: 10.1109/SIS.2005.1501607
- 109.
Pugh, J.; Martinoli, A. Multi-robot learning with particle swarm optimization. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, 8–12 May 2006; ACM: Hakodate, 2006; pp. 441–448. doi: 10.1145/1160633.1160715
- 110.
Di Mario, E.; Navarro, I.; Martinoli, A. A distributed noise-resistant particle swarm optimization algorithm for high-dimensional multi-robot learning. In 2015 IEEE International Conference on Robotics and Automation, Seattle, USA, 26–30 May 2015; IEEE: Seattle, 2015; pp. 5970–5976. doi: 10.1109/ICRA.2015.7140036
- 111.
Chauhan, A.; Saini, R.P. A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable Sustainable Energy Rev., 2014, 38: 99−120.
- 112.
Khare, A.; Rangnekar, S. A review of particle swarm optimization and its applications in solar photovoltaic system. Appl. Soft Comput., 2013, 13: 2997−3006.
- 113.
Tudu, B.; Majumder, S.; Mandal, K.K.; et al. Comparative performance study of genetic algorithm and particle swarm optimization applied on off-grid renewable hybrid energy system. In Proceedings of the 2nd International Conference on Swarm, Evolutionary, and Memetic Computing, Visakhapatnam, India, 19–21 December 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 151–158. doi: 10.1007/978-3-642-27172-4_19
- 114.
Akshat, K.S.; Prabodh, B. Swarm intelligence based optimal sizing of solar PV, fuel cell and battery hybrid system. In Proceedings of the 2012 International Conference on Power and Energy Systems, Hong Kong, China, August 2012; Information Engineering Research Institute: Hong Kong, China, 2012; pp. 467–473.
- 115.
Bashir, M.; Sadeh, J. Size optimization of new hybrid stand-alone renewable energy system considering a reliability index. In Proceedings of the 11th International Conference on Environment and Electrical Engineering, Venice, Italy, 18–25 May 2012; IEEE: Venice, 2009; pp. 989–994. doi: 10.1109/EEEIC.2012.6221521
- 116.
Navaeefard, A.; Tafreshi, S.M.M.; Barzegari, M.; et al. Optimal sizing of distributed energy resources in microgrid considering wind energy uncertainty with respect to reliability. In Proceedings of the 2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010; IEEE: Manama, 2010; pp. 820–825. doi: 10.1109/ENERGYCON.2010.5771795
- 117.
Ishaque, K.; Salam, Z.; Amjad, M.; et al. An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE Trans. Power Electron., 2012, 27: 3627−3638.
- 118.
Tumbelaka, H.H.; Miyatake, M. A grid current-controlled inverter with particle swarm optimization MPPT for PV generators. World Acad. Sci., Eng. Technol., 2010, 4: 1086−1091.
- 119.
Fu, Q.; Tong, N. A new PSO algorithm based on adaptive grouping for photovoltaic MPP prediction. In Proceedings of the 2nd International Workshop on Intelligent Systems and Applications, Wuhan, China, 22–23 May 2010; IEEE: Wuhan, 2010; pp. 1–5. doi: 10.1109/IWISA.2010.5473243
- 120.
Rosa, J.; Canovas, P.; Islam, A.; et al. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol. Biol. Cell, 2006, 17: 1483−1493.
- 121.
Miyatake, M.; Veerachary, M.; Toriumi, F.; et al. Maximum power point tracking of multiple photovoltaic arrays: A PSO approach. IEEE Trans. Aerosp. Electron. Syst., 2011, 47: 367−380.
- 122.
Ngan, M.S.; Tan, C.W. Multiple peaks tracking algorithm using particle swarm optimization incorporated with artificial neural network. Int. J. Electr., Electron. Commun. Sci., 2011, 5: 1297−1303.
- 123.
Zhao, Y.S.; Zhan, J.; Zhang, Y.; et al. The optimal capacity configuration of an independent Wind/PV hybrid power supply system based on improved PSO algorithm. In Proceedings of the 8th International Conference on Advances in Power System Control, Operation and Management, Hong Kong, China, 8–11 November 2009; IEEE: Hong Kong, China, 2009; pp. 1–7. doi: 10.1049/cp.2009.1806
- 124.
Soon, J.J.; Low, K.S. Optimizing photovoltaic model parameters for simulation. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012; IEEE: Hangzhou, 2012; pp. 1813–1818. doi: 10.1109/ISIE.2012.6237367
- 125.
Al-Saedi, W.; Lachowicz, S.W.; Habibi, D. An optimal current control strategy for a three-phase grid-connected photovoltaic system using particle swarm optimization. In Proceedings of the 2011 IEEE Power Engineering and Automation Conference, Wuhan, China, 8–9 September 2011; IEEE: Wuhan, 2011; pp. 286–290. doi: 10.1109/PEAM.2011.6134857
- 126.
Mahor, A.; Prasad, V.; Rangnekar, S. Economic dispatch using particle swarm optimization: A review. Renewable Sustainable Energy Rev., 2009, 13: 2134−2141.
- 127.
Kumar, A.I.S.; Dhanushkodi, K.; Kumar, J.J.; et al. Particle swarm optimization solution to emission and economic dispatch problem. In Proceedings of the 2003 Conference on Convergent Technologies for Asia-Pacific Region, Bangalore, India, 15–17 October 2003; IEEE: Bangalore, 2003; pp. 435–439. doi: 10.1109/TENCON.2003.1273360
- 128.
Victoire, T.A.A.; Jeyakumar, A.E. Reserve constrained dynamic dispatch of units with valve-point effects. IEEE Trans. Power Syst., 2005, 20: 1273−1282.
- 129.
Umayal, S.P.; Kamaraj, N. Stochastic multi objective short term hydrothermal scheduling using particle swarm optimization. In Proceedings of the 2005 Annual IEEE India Conference, Chennai, India, 11–13 December 2005; IEEE: Chennai, 2005; pp. 497–501. doi: 10.1109/INDCON.2005.1590220
- 130.
Coelho, L.D.S.; Lee, C.S. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. Int. J. Elect. Power Energy Syst., 2008, 30: 297−307.
- 131.
Panigrahi, B.K.; Pandi, V.R.; Das, S. Adaptive particle swarm optimization approach for static and dynamic economic load dispatch. Energy Convers. Manage., 2008, 49: 1407−1415.
- 132.
Padhy, N.P. Unit commitment-a bibliographical survey. IEEE Trans. Power Syst., 2004, 19: 1196−1205.
- 133.
Saber, A.Y.; Senjyu, T.; Yona, A.; et al. Unit commitment computation by fuzzy adaptive particle swarm optimisation. IET Gener., Transm. Distrib., 2007, 1: 456−465.
- 134.
Karaboga, D.; Ozturk, C. A novel clustering approach: Artificial bee colony (ABC) algorithm. Appl. Soft Comput., 2011, 11: 652−657.
- 135.
- 136.
Li, L.L.; Liu, X.Y.; Xu, M.M. A novel fuzzy clustering based on particle swarm optimization. In Proceedings of the 1st IEEE International Symposium on Information Technologies and Applications in Education, Kunming, China, 23–25 November 2007; IEEE: Kunming, 2007; pp. 88–90. doi: 10.1109/ISITAE.2007.4409243
- 137.
Izakian, H.; Abraham, A.; Snášel, V. Fuzzy clustering using hybrid fuzzy c-means and fuzzy particle swarm optimization. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; IEEE: Coimbatore, 2009; pp. 1690–1694. doi: 10.1109/NABIC.2009.5393618
- 138.
Filho, T.M.S.; Pimentel, B.A.; Souza, R.M.C.R.; et al. Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. Expert Syst. Appl., 2015, 42: 6315−6328.
- 139.
Sengupta, S.; Basak, S.; Peters, R.A. Data clustering using a hybrid of fuzzy C-means and quantum-behaved particle swarm optimization. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, Las Vegas, USA, 8–10 January 2018; IEEE: Las Vegas, 2018; pp. 137–142. doi: 10.1109/CCWC.2018.8301693
- 140.
Alam, S.; Dobbie, G.; Koh, Y.S.; et al. Research on particle swarm optimization based clustering: A systematic review of literature and techniques. Swarm Evol. Comput., 2014, 17: 1−13.
- 141.
Xiao, X.; Dow, E.R.; Eberhart, R.; et al. Gene clustering using self-organizing maps and particle swarm optimization. In Proceedings of the International Parallel and Distributed Processing Symposium, Nice, France, 22–26 April 2003; IEEE: Nice, 2003; pp. 10–19. doi: 10.1109/IPDPS.2003.1213290
- 142.
Xue, Y.; Xue, B.; Zhang, M.J. Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Trans. Knowl. Discovery Data, 2019, 13: 50.
- 143.
Xue, B.; Zhang, M.J.; Browne, W.N. Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Trans. Cybern., 2013, 43: 1656−1671.
- 144.
Ait-Aoudia, S.; Guerrout, E.H.; Mahiou, R. Medical image segmentation using particle swarm optimization. In Proceedings of the 18th International Conference on Information Visualisation, Paris, France, 16–18 July 2014; IEEE: Paris, 2014; pp. 287–291. doi: 10.1109/IV.2014.68
- 145.
Ghamisi, P.; Couceiro, M.S.; Martins, F.M.L.; et al. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans. Geosci. Remote Sens., 2014, 52: 2382−2394.
- 146.
Gorai, A.; Ghosh, A. Gray-level image enhancement by particle swarm optimization. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; IEEE: Coimbatore, 2009; pp. 72–77. doi: 10.1109/NABIC.2009.5393603
- 147.
Mohsen, F.; Hadhoud, M.M.; Mostafa, K.; et al. A new image segmentation method based on particle swarm optimization. Int. Arab J. Inf. Technol., 2012, 9: 487−493.
- 148.
Song, B.Y.; Xiao, Y.H.; Xu, L. Design of fuzzy PI controller for brushless DC motor based on PSO–GSA algorithm. Syst. Sci. Control Eng., 2020, 8: 67−77.
- 149.
Zhang, P.; Lai, X.Z.; Wang, Y.W.; et al. PSO-based nonlinear model predictive planning and discrete-time sliding tracking control for uncertain planar underactuated manipulators. Int. J. Syst. Sci., 2022, 53: 2075−2089.
- 150.
Zong, T.C.; Li, J.H.; Lu, G.P. Bias-compensated least squares and fuzzy PSO based hierarchical identification of errors-in-variables Wiener systems. Int. J. Syst. Sci. 2022, in press, doi: 10.1080/00207721.2022.2135976.
- 151.
Liu, L.; Liu, W.X.; Cartes, D.A. Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng. Appl. Artif. Intell., 2008, 21: 1092−1100.
- 152.
Gaing, Z.L. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers., 2004, 19: 384−391.
- 153.
Bajpai, P.; Singh, S.N. Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market. IEEE Trans. Power Syst., 2007, 22: 2152−2160.
- 154.
Ciuprina, G.; Ioan, D.; Munteanu, I. Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans. Magn., 2002, 38: 1037−1040.
- 155.
Pontani, M.; Conway, B.A. Particle swarm optimization applied to space trajectories. J. Guid., Control, Dyn., 2010, 33: 1429−1441.
- 156.
Zhao, J.; Zhou, R. Particle swarm optimization applied to hypersonic reentry trajectories. Chin. J. Aeronaut., 2015, 28: 822−831.
- 157.
Cheng, G.H.; Jing, W.X.; Gao, C.S. Recovery trajectory planning for the reusable launch vehicle. Aerosp. Sci. Technol., 2021, 117: 106965.