- 1.
Bianchi, P.; Jakubowicz, J.; Roueff, F. Linear precoders for the detection of a Gaussian process in wireless sensors networks. IEEE Trans. Signal Process., 2011, 59: 882−894.
- 2.
Kokiopoulou, E.; Frossard, P. Distributed classification of multiple observation sets by consensus. IEEE Trans. Signal Process., 2011, 59: 104−114.
- 3.
Ding, D.R.; Wang, Z.D.; Han, Q.L.; et al. Recursive secure filtering over Gilbert-Elliott channels in sensor networks: The distributed case. IEEE Trans. Signal Inf. Proc. Netw., 2021, 7: 75−86.
- 4.
Zhu, M.Z.; Chen, Y.; Kong, Y.G.; et al. Distributed filtering for Markov jump systems with randomly occurring one-sided Lipschitz nonlinearities under round-robin scheduling. Neurocomputing, 2020, 417: 396−405.
- 5.
Wang, F.; Wang, Z.D.; Liang, J.L.; et al. Recursive distributed filtering for two-dimensional shift-varying systems over sensor networks under stochastic communication protocols. Automatica, 2020, 115: 108865.
- 6.
Yang, H.J.; Li, H.; Xia, Y.Q.; et al. Distributed Kalman filtering over sensor networks with transmission delays. IEEE Trans. Cybern., 2021, 51: 5511−5521.
- 7.
Ding, D.R.; Wang, Z.D.; Ho, D.W.C.; et al. Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica, 2017, 78: 231−240.
- 8.
Zhang, D.; Xu, Z.H.; Karimi, H.R.; et al. Distributed filtering for switched linear systems with sensor networks in presence of packet dropouts and quantization. IEEE Trans. Circuits Syst. I Reg. Papers, 2017, 64: 2783−2796.
- 9.
Shen, B.; Wang, Z.D.; Huang, Y.S. Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case. Automatica, 2010, 46: 1682−1688.
- 10.
Dong, H.L.; Wang, Z.D.; Gao, H.J. Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts. IEEE Trans. Signal Process., 2012, 60: 3164−3173.
- 11.
Ma, L.F.; Wang, Z.D.; Lam, H.K.; et al. Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks. IEEE Trans. Cybern., 2017, 47: 3772−3783.
- 12.
Ge, X.H.; Han, Q.L.; Wang, Z.D. A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybern., 2019, 49: 171−183.
- 13.
Ding, D.R.; Wang, Z.D.; Han, Q.L. A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Autom. Control, 2020, 65: 1792−1799.
- 14.
Liu, Q.Y.; Wang, Z.D.; He, X.; et al. Event-based recursive distributed filtering over wireless sensor networks. IEEE Trans. Autom. Control, 2015, 60: 2470−2475.
- 15.
Li, Q.; Wang, Z.D.; Shen, B.; et al. A resilient approach to recursive distributed filtering for multirate systems over sensor networks with time-correlated fading channels. IEEE Trans. Signal Inf. Proc. Netw., 2021, 7: 636−647.
- 16.
Shen, B.; Wang, Z.D.; Wang, D.; et al. Distributed state-saturated recursive filtering over sensor networks under round-robin protocol. IEEE Trans. Cybern., 2020, 50: 3605−3615.
- 17.
Ma, L.F.; Wang, Z.D.; Han, Q.L.; et al. Variance-constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks. IEEE Sensors J., 2017, 17: 2279−2288.
- 18.
Vázquez, M.A.; Míguez, J. A robust scheme for distributed particle filtering in wireless sensors networks. Signal Process., 2017, 131: 190−201.
- 19.
Hlinka, O.; Slučiak, O.; Hlawatsch, F.; et al. Likelihood consensus and its application to distributed particle filtering. IEEE Trans. Signal Process., 2012, 60: 4334−4349.
- 20.
Ghirmai, T. Distributed particle filter for target tracking: With reduced sensor communications. Sensors, 2016, 16: 1454.
- 21.
Yan, H.C.; Qian, F.F.; Yang, F.W.; et al. H∞ filtering for nonlinear networked systems with randomly occurring distributed delays, missing measurements and sensor saturation. Inf. Sci. 2016, 370–371, 772–782. doi: 10.1016/j.ins.2015.09.027
- 22.
Jin, H.; Sun, S.L. Distributed filtering for sensor networks with fading measurements and compensations for transmission delays and losses. Signal Process., 2022, 190: 108306.
- 23.
Feng, S.Y.; Yu, H.; Jia, C.Q.; et al. Joint state and fault estimation for nonlinear complex networks with mixed time-delays and uncertain inner coupling: Non-fragile recursive method. Syst. Sci. Control Eng., 2022, 10: 603−615.
- 24.
Li, Z.H.; Hu, J.; Li, J.X. Distributed filtering for delayed nonlinear system with random sensor saturation: A dynamic event-triggered approach. Syst. Sci. Control Eng., 2021, 9: 440−454.
- 25.
Liu, Q.Y.; Wang, Z.D.; He, X.; et al. Event-based distributed filtering with stochastic measurement fading. IEEE Trans. Ind. Inf., 2015, 11: 1643−1652.
- 26.
Xu, Y.; Lu, R.Q.; Shi, P.; et al. Finite-time distributed state estimation over sensor networks with round-robin protocol and fading channels. IEEE Trans. Cybern., 2018, 48: 336−345.
- 27.
Zhu, Y.Z.; Zhang, L.X.; Zheng, W.X. Distributed H∞ filtering for a class of discrete-time Markov jump Lur’e systems with redundant channels. IEEE Trans. Industr. Electron., 2016, 63: 1876−1885.
- 28.
Zhu, K.Q.; Wang, Z.D.; Han, Q.L.; et al. Distributed set-membership fusion filtering for nonlinear 2-D systems over sensor networks: An encoding-decoding scheme. IEEE Trans. Cybern., 2023, 53: 416−427.
- 29.
Zhang, L.X.; Ning, Z.P.; Wang, Z.D. Distributed filtering for fuzzy time-delay systems with packet dropouts and redundant channels. IEEE Trans. Syst. Man Cybern. Syst., 2016, 46: 559−572.
- 30.
Yu, H.Y.; Zhuang, Y.; Wang, W. Distributed H∞ filtering in sensor networks with randomly occurred missing measurements and communication link failures. Inf. Sci., 2013, 222: 424−438.
- 31.
Wen, C.B.; Wang, Z.D.; Liu, Q.Y.; et al. Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects. IEEE Trans. Syst. Man Cybern. Syst., 2018, 48: 930−941.
- 32.
Liu, S.; Wang, Z.D.; Wei, G.L.; et al. Distributed set-membership filtering for multirate systems under the round-robin scheduling over sensor networks. IEEE Trans. Cybern., 2020, 50: 1910−1920.
- 33.
Hu, Z.B.; Hu, J.; Tan, H.L.; et al. Distributed resilient fusion filtering for nonlinear systems with random sensor delay under round-robin protocol. Int. J. Syst. Sci., 2022, 53: 2786−2799.
- 34.
Liu, K.; Guo, H.; Zhang, Q.R.; et al. Distributed secure filtering for discrete-time systems under round-robin protocol and deception attacks. IEEE Trans. Cybern., 2020, 50: 3571−3580.
- 35.
Ugrinovskii, V.; Fridman, E. A round-robin type protocol for distributed estimation with H∞ consensus. Syst. Control Lett., 2014, 69: 103−110.
- 36.
Ju, Y.M.; Wei, G.L.; Ding, D.R.; et al. A novel fault detection method under weighted try-once-discard scheduling over sensor networks. IEEE Trans. Control Netw. Syst., 2020, 7: 1489−1499.
- 37.
Li, X.; Wei, G.L.; Ding, D.R.; et al. Recursive filtering for time-varying discrete sequential systems subject to deception attacks: Weighted try-once-discard protocol. IEEE Trans. Syst. Man Cybern. Syst., 2022, 52: 3704−3713.
- 38.
Liu, S.; Zhao, X.X.; Tian, E.G.; et al. Distributed recursive filtering under random access protocols: A multirate strategy. Int. J. Robust Nonlinear Control, 2022, 32: 7132−7148.
- 39.
Wan, X.B.; Wang, Z.D.; Han, Q.L.; et al. Finite-time H∞ state estimation for discrete time-delayed genetic regulatory networks under stochastic communication protocols. IEEE Trans. Circuits Syst. I Reg. Papers, 2018, 65: 3481−3491.
- 40.
Han, F.; Song, Y.; Zhang, S.J.; et al. Local condition-based finite-horizon distributed H∞-consensus filtering for random parameter system with event-triggering protocols. Neurocomputing, 2017, 219: 221−231.
- 41.
Ge, X.H.; Han, Q.L. Distributed event-triggered H∞ filtering over sensor networks with communication delays. Inf. Sci., 2015, 291: 128−142.
- 42.
Zhu, S.Y.; Chen, C.L.; Li, W.S.; et al. Distributed optimal consensus filter for target tracking in heterogeneous sensor networks. IEEE Trans. Cybern., 2013, 43: 1963−1976.
- 43.
Millán, P.; Orihuela, L.; Vivas, C. et al. Distributed consensus-based estimation considering network induced delays and dropouts. Automatica, 2012, 48: 2726−2729.
- 44.
Olfati-Saber, R.; Jalalkamali, P. Coupled distributed estimation and control for mobile sensor networks. IEEE Trans. Autom. Control, 2012, 57: 2609−2614.
- 45.
Han, F.; Wei, G.L.; Ding, D.R.; et al. Local condition based consensus filtering with stochastic nonlinearities and multiple missing measurements. IEEE Trans. Autom. Control, 2017, 62: 4784−4790.
- 46.
Liang, J.L.; Wang, Z.D.; Liu, X.H. Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Trans. Neural Netw., 2011, 22: 486−496.
- 47.
Shen, B.; Wang, Z.D.; Liu, X.H. A stochastic sampled-data approach to distributed H∞ filtering in sensor networks. IEEE Trans. Circuits Syst. I Reg. Papers, 2011, 58: 2237−2246.
- 48.
Ding, D.R.; Wang, Z.D.; Dong, H.L.; et al. Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case. Automatica, 2012, 48: 1575−1585.
- 49.
Liu, Q.Y.; Wang, Z.D.; He, X.; et al. A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation. IEEE Trans. Signal Process., 2017, 65: 1300−1309.
- 50.
Huang, C.; Ho, D.W.C.; Lu, J.Q. Partial-information-based distributed filtering in two-targets tracking sensor networks. IEEE Trans. Circuits Syst. I Reg. Papers, 2012, 59: 820−832.
- 51.
Song, H.Y.; Yu, L.; Zhang, D. Distributed set-valued estimation in sensor networks with limited communication data rate. J. Frankl Inst., 2013, 350: 1264−1283.
- 52.
Shen, B.; Wang, Z.D.; Hung, Y.S.; et al. Distributed H∞ filtering for polynomial nonlinear stochastic systems in sensor networks. IEEE Trans. Ind. Electron., 2011, 58: 1971−1979.
- 53.
Zhang, W.A.; Dong, H.; Guo, G.; et al. Distributed sampled-data H∞ filtering for sensor networks with nonuniform sampling periods. IEEE Trans. Ind. Inf., 2014, 10: 871−881.
- 54.
Su, X.J.; Wu, L.G.; Shi, P. Sensor networks with random link failures: Distributed filtering for T-S fuzzy systems. IEEE Trans. Ind. Inf., 2013, 9: 1739−1750.
- 55.
Matei, I.; Baras, J.S. A linear distributed filter inspired by the Markovian jump linear system filtering problem. Automatica, 2012, 48: 1924−1928.
- 56.
Matei, I.; Baras, J.S. Consensus-based linear distributed filtering. Automatica, 2012, 48: 1776−1782.
- 57.
Chen, Y.G.; Wang, Z.D.; Alsaadi, F.E.; et al. Dynamic output-feedback H∞ control for discrete time-delayed systems with actuator saturations under round-robin communication protocol. Int. J. Robust Nonlinear Control, 2022, 32: 1703−1720.
- 58.
Li, X.F.; Fang, J.A.; Li, H.Y. Finite-time synchronization of memristive neural networks with time-varying delays via two control methods. Math. Meth. Appl. Sci., 2019, 42: 2746−2760.
- 59.
Liu, A.D.; Zhang, W.A.; Chen, B.; et al. Networked filtering with Markov transmission delays and packet disordering. IET Control Theory Appl., 2018, 12: 687−693.
- 60.
Wang, Y.Z.; Wang, Z.D.; Zou, L. et al. H∞ proportional-integral state estimation for T-S fuzzy systems over randomly delayed redundant channels with partly known probabilities. IEEE Trans. Cybern., 2022, 52: 9951−9963.
- 61.
Qian, W.; Xing, W.W.; Fei, S.M. H∞ state estimation for neural networks with general activation function and mixed time-varying delays. IEEE Trans. Neural Netw. Learn. Syst., 2021, 32: 3909−3918.
- 62.
Zhao, Z.Y.; Yi, X.J.; Ma, L.F.; et al. Quantized recursive filtering for networked systems with stochastic transmission delays. ISA Trans., 2022, 127: 99−107.
- 63.
Sun, Y.; Mao, J.Y.; Liu, H.J.; et al. Distributed recursive filtering for discrete time-delayed stochastic nonlinear systems based on fuzzy rules. Neurocomputing, 2020, 400: 412−419.
- 64.
Zhao, Z.Y.; Wang, Z.D.; Zou, L.; et al. Finite-horizon H∞ state estimation for artificial neural networks with component-based distributed delays and stochastic protocol. Neurocomputing, 2018, 321: 169−177.
- 65.
Chen, Y.; Wang, Z.D.; Yuan, Y.; Date, P. Distributed H∞ filtering for switched stochastic delayed systems over sensor networks with fading measurements. IEEE Trans. Cybern., 2020, 50: 2−14.
- 66.
Cloosterman, M.B.G.; Hetel, L.; Van De Wouw, N.; et al. Controller synthesis for networked control systems. Automatica, 2010, 46: 1584−1594.
- 67.
Li, J.N.; Er, M.J.; Yu, H.B. Sampling and control strategy: Networked control systems subject to packet disordering. IET Control Theory Appl., 2016, 10: 674−683.
- 68.
Liu, A.D.; Zhang, W.A.; Yu, L.; et al. New results on stabilization of networked control systems with packet disordering. Automatica, 2015, 52: 255−259.
- 69.
Zhang, X.M.; Han, Q.L. Network-based H∞ filtering for discrete-time systems. IEEE Trans. Signal Process., 2012, 60: 956−961.
- 70.
Wang, D.; Wang, Z.D.; Li, G.Y.; et al. Distributed filtering for switched nonlinear positive systems with missing measurements over sensor networks. IEEE Sens. J., 2016, 16: 4940−4948.
- 71.
Li, B.; Wang, Z.D.; Han, Q.L.; et al. Distributed quasiconsensus control for stochastic multiagent systems under round-robin protocol and uniform quantization. IEEE Trans. Cybern., 2022, 52: 6721−6732.
- 72.
Zou, L.; Wang, Z.D.; Han, Q.L.; et al. Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects. IEEE Trans. Autom. Control, 2017, 62: 6582−6588.
- 73.
Yuan, H.H.; Guo, Y.Z.; Xia, Y.Q. Event-based distributed filtering against deception attacks for sensor networks with quantization effect. ISA Trans., 2022, 126: 338−351.
- 74.
Li, T.; Xie, L.H. Distributed coordination of multi-agent systems with quantized-observer based encoding-decoding. IEEE Trans. Autom. Control, 2012, 57: 3023−3037.
- 75.
Wang, L.C.; Wang, Z.D.; Han, Q.L.; et al. Synchronization control for a class of discrete-time dynamical networks with packet dropouts: A coding-decoding-based approach. IEEE Trans. Cybern., 2018, 48: 2437−2448.
- 76.
Wang, L.C.; Wang, Z.D.; Han, Q.L.; et al. Event-based variance-constrained H∞ filtering for stochastic parameter systems over sensor networks with successive missing measurements. IEEE Trans. Cybern., 2018, 48: 1007−1017.
- 77.
Shen, D.; Zhang, C. Zero-error tracking control under unified quantized iterative learning framework via encoding-decoding method. IEEE Trans. Cybern., 2022, 52: 1979−1991.
- 78.
Liu, L.; Ma, L.F.; Guo, J.; et al. Distributed set-membership filtering for time-varying systems: A coding-decoding-based approach. Automatica, 2021, 129: 109684.
- 79.
Wang, L.C.; Wang, Z.D.; Zhao, D.; et al. Event-based state estimation under constrained bit rate: An encoding-decoding approach. Automatica, 2022, 143: 110421.
- 80.
Suo, J.H.; Li, N. Observer-based synchronisation control for discrete-time delayed switched complex networks with coding-decoding approach. Int. J. Syst. Sci., 2022, 53: 2711−2728.
- 81.
Jiang, B.; Dong, H.L.; Shen, Y.X.; et al. Encoding-decoding-based recursive filtering for fractional-order systems. IEEE/CAA J. Autom. Sin., 2022, 9: 1103−1106.
- 82.
Movaghati, S.; Ardakani, M. Optimum bit-sensor assignment for distributed estimation in inhomogeneous sensor networks. IEEE Commun. Lett., 2014, 18: 668−671.
- 83.
Gao, Y.T.; Ma, L.F.; Zhang, M.J.; et al. Distributed set-membership filtering for nonlinear time-varying systems with dynamic coding-decoding communication protocol. IEEE Syst. J., 2022, 16: 2958−2967.
- 84.
Wen, P.Y.; Li, X.R.; Hou, N.; et al. Distributed recursive fault estimation with binary encoding schemes over sensor networks. Syst. Sci. Control Eng., 2022, 10: 417−427.
- 85.
Zou, L.; Wang, Z.D.; Hu, J.; et al. Communication-protocol-based analysis and synthesis of networked systems: Progress, prospects and challenges. Int. J. Syst. Sci., 2021, 52: 3013−3034.
- 86.
Walsh, G.C.; Ye, H.; Bushnell, L.G. Stability analysis of networked control systems. IEEE Trans. Control Syst. Technol., 2002, 10: 438−446.
- 87.
Zhu, K.Q.; Hu, J.; Liu, Y.R.; et al. On l2-l∞ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems. Int. J. Syst. Sci., 2021, 52: 2961−2976.
- 88.
Zou, L.; Wang, Z.D.; Han, Q.L.; et al. Recursive filtering for time-varying systems with random access protocol. IEEE Trans. Autom. Control, 2019, 64: 720−727.
- 89.
Qu, F.R.; Zhao, X.; Wang, X.M.; et al. Probabilistic-constrained distributed fusion filtering for a class of time-varying systems over sensor networks: A torus-event-triggering mechanism. Int. J. Syst. Sci., 2022, 53: 1288−1297.
- 90.
An, W.J.; Zhao, P.F.; Liu, H.J.; et al. Distributed multi-step subgradient projection algorithm with adaptive event-triggering protocols: A framework of multiagent systems. Int. J. Syst. Sci., 2022, 53: 2758−2772.
- 91.
Meng, M.Y.; Chen, T.W. Event based agreement protocols for multi-agent networks. Automatica, 2013, 49: 2125−2132.
- 92.
Suo, J.H.; Li, N.; Li, Q. Event-triggered H∞ state estimation for discrete-time delayed switched stochastic neural networks with persistent dwell-time switching regularities and sensor saturations. Neurocomputing, 2021, 455: 297−307.
- 93.
Li, N.; Li, Q.; Suo, J.H. Dynamic event-triggered H∞ state estimation for delayed complex networks with randomly occurring nonlinearities. Neurocomputing, 2021, 421: 97−104.
- 94.
Shen, Y.X.; Wang, Z.D.; Dong, H.L.; et al. Dynamic event-based recursive filtering for multirate systems with integral measurements over sensor networks. Int. J. Robust Nonlinear Control, 2022, 32: 1374−1392.
- 95.
Liu, J.L.; Gu, Y.Y.; Cao, J.; et al. Distributed event-triggered H∞ filtering over sensor networks with sensor saturations and cyber-attacks. ISA Trans., 2018, 81: 63−75.
- 96.
Tan, Y.S.; Xiong, M.H.; Niu, B.; et al. Distributed hybrid-triggered H∞ filter design for sensor networked systems with output saturations. Neurocomputing, 2018, 315: 261−271.
- 97.
Wan, X.B.; Wang, Z.D.; Wu, M.; et al. H∞ state estimation for discrete-time nonlinear singularly perturbed complex networks under the round-robin protocol. IEEE Trans. Neural Netw. Learn. Syst., 2019, 30: 415−426.
- 98.
Yin, X.Y.; Li, Z.J.; Zhang, L.X. et al. Distributed state estimation of sensor-network systems subject to Markovian channel switching with application to a chemical process. IEEE Trans. Syst. Man Cybern. Syst., 2018, 48: 864−874.
- 99.
Hu, J.; Wang, Z.D.; Liang, J.L.; et al. Event-triggered distributed state estimation with randomly occurring uncertainties and nonlinearities over sensor networks: A delay-fractioning approach. J. Franklin Inst., 2015, 352: 3750−3763.
- 100.
Zhang, D.; Yu, L.; Zhang, W.A. Energy efficient distributed filtering for a class of nonlinear systems in sensor networks. IEEE Sens. J., 2015, 15: 3026−3036.
- 101.
Chen, B.S.; Zhang, W.H. Stochastic H2/H∞ control with state-dependent noise. IEEE Trans. Autom. Control, 2004, 49: 45−57.
- 102.
Bernstein, D.S.; Haddad, W.M. LQG control with an H∞ performance bound: A Riccati equation approach. IEEE Trans. Autom. Control, 1989, 34: 293−305.
- 103.
Zhang, W.H.; Huang, Y.L.; Zhang, H.S. Stochastic H2/H∞ control for discrete-time systems with state and disturbance dependent noise. Automatica, 2007, 43: 513−521.
- 104.
Shi, Y.B.; Wang, J.H.; Fang, X.K.; et al. Robust mixed H2/H∞ control for an uncertain wireless sensor network systems with time delay and packet loss. Int. J. Control Autom. Syst., 2021, 19: 88−100.
- 105.
Liu, L.; Zhou, W.J.; Fei, M.R.; et al. Distributed fusion estimation for stochastic uncertain systems with network-induced complexity and multiple noise. IEEE Trans. Cybern., 2022, 52: 8753−8765.
- 106.
Chen, B.; Hu, G.Q.; Zhang, W.A.; et al. Distributed mixed H2/H∞ fusion estimation with limited communication capacity. IEEE Trans. Autom. Control, 2016, 61: 805−810.
- 107.
Chen, C.Y.; Dong, W.J.; Djapic, V. Distributed H2/H∞ filtering over infinite horizon. Int. J. Adapt. Control Signal Process., 2018, 32: 330−343.
- 108.
Liu, H.J.; Wang, Z.D.; Fei, W.Y.; et al. H∞ and l2/l∞ state estimation for delayed memristive neural networks on finite horizon: The round-robin protocol. Neural Netw., 2020, 132: 121−130.
- 109.
Zhao, D.; Wang, Z.D.; Wei, G.L.; et al. l2/l∞ proportional-integral observer design for systems with mixed time-delays under round-robin protocol. Int. J. Robust Nonlinear Control, 2021, 31: 887−906.
- 110.
Zou, L.; Wang, Z.D.; Dong, H.L.; et al. Energy-to-peak state estimation with intermittent measurement outliers: The single-output case. IEEE Trans. Cybern., 2022, 52: 11504−11515.
- 111.
Rotea, M.A. The generalized H2 control problem. Automatica, 1993, 29: 373−385.
- 112.
Chen, Y.; Chen, C.; Xue, A.K. Distributed non-fragile l2-l∞ filtering over sensor networks with random gain variations and fading measurements. Neurocomputing, 2019, 338: 154−162.
- 113.
Shen, H.; Xing, M.P.; Wu, Z.G.; et al. l2/l∞ state estimation for persistent dwell-time switched coupled networks subject to round-robin protocol. IEEE Trans. Neural Netw. Learn. Syst., 2021, 32: 2002−2014.
- 114.
Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng., 1960, 82: 35−45.
- 115.
Olfati-Saber, R. Distributed Kalman filtering for sensor networks. In Proceeding of the 46th IEEE Conference on Decision and Control, New Orleans, USA, 12–14 December 2007; IEEE: New Orleans, LAUSA, 2007; pp. 5492–5498. doi: 10.1109/CDC.2007.4434303
- 116.
Olfati-Saber, R.; Shamma, J.S. Consensus filters for sensor networks and distributed sensor fusion. In Proceeding of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005; IEEE: Seville, Spain, 2005; pp. 6698–6703. doi: 10.1109/CDC.2005.1583238
- 117.
Olfati-Saber, R. Kalman-consensus filter: Optimality, stability, and performance. In Proceeding of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009; IEEE: Shanghai, China, 2009; pp. 7036–7042. doi: 10.1109/CDC.2009.5399678
- 118.
Xie, L.H.; Soh, Y.C.; De Souza, C.E. Robust Kalman filtering for uncertain discrete-time systems. IEEE Trans. Autom. Control, 1994, 39: 1310−1314.
- 119.
Fu, M.Y.; De Souza, C.E.; Luo, Z.Q. Finite-horizon robust Kalman filter design. IEEE Trans. Signal Process., 2001, 49: 2103−2112.
- 120.
Song, W.H.; Wang, J.N.; Wang, C.Y.; et al. A variance-constrained approach to event-triggered distributed extended Kalman filtering with multiple fading measurements. Int. J. Robust Nonlinear Control, 2019, 29: 1558−1576.
- 121.
Su, H.S.; Li, Z.H.; Ye, Y.Y. Event-triggered Kalman-consensus filter for two-target tracking sensor networks. ISA Trans., 2017, 71: 103−111.
- 122.
Li, Q.; Shen, B.; Wang, Z.D.; et al. Recursive distributed filtering over sensor networks on Gilbert-Elliott channels: A dynamic event-triggered approach. Automatica, 2020, 113: 108681.
- 123.
Han, F.; Wang, Z.D.; Dong, H.L.; et al. A local approach to distributed H∞-consensus state estimation over sensor networks under hybrid attacks: Dynamic event-triggered scheme. IEEE Trans. Signal Inf. Proc. Netw., 2022, 8: 556−570.
- 124.
Dong, H.L.; Bu, X.Y.; Hou, N.; et al. Event-triggered distributed state estimation for a class of time-varying systems over sensor networks with redundant channels. Inf. Fusion, 2017, 36: 243−250.
- 125.
Wen, C.B.; Wang, Z.D.; Geng, T.; et al. Event-based distributed recursive filtering for state-saturated systems with redundant channels. Inf. Fusion, 2018, 39: 96−107.
- 126.
Bu, X.Y.; Dong, H.L.; Han, F.; et al. Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the round-robin protocol. Neurocomputing, 2019, 346: 58−64.
- 127.
Sheng, L.; Niu, Y.C.; Gao, M. Distributed resilient filtering for time-varying systems over sensor networks subject to round-robin/stochastic protocol. ISA Trans., 2019, 87: 55−67.
- 128.
Han, F.; Wang, Z.D.; Chen, G.R.; et al. Scalable consensus filtering for uncertain systems over sensor networks with round-robin protocol. Int. J. Robust Nonlinear Control, 2021, 31: 1051−1066.
- 129.
Chen, S.; Ma, L.F.; Ma, Y.Q. Distributed set-membership filtering for nonlinear systems subject to round-robin protocol and stochastic communication protocol over sensor networks. Neurocomputing, 2020, 385: 13−21.
- 130.
Wei, G.L.; Liu, S.; Wang, L.C.; et al. Event-based distributed set-membership filtering for a class of time-varying non-linear systems over sensor networks with saturation effects. Int. J. Gen. Syst., 2016, 45: 532−547.
- 131.
Zhao, Z.Y.; Wang, Z.D.; Zou, L.; et al. Event-triggered set-membership state estimation for complex networks: A zonotopes-based method. IEEE Trans. Netw. Sci. Eng., 2022, 9: 1175−1186.
- 132.
Pak, J.M.; Ahn, C.K.; Shi, P.; et al. Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Trans. Ind. Electron., 2017, 64: 5182−5191.
- 133.
Song, W.H.; Wang, Z.D.; Wang, J.N.; et al. Distributed auxiliary particle filtering with diffusion strategy for target tracking: A dynamic event-triggered approach. IEEE Trans. Signal Process., 2021, 69: 328−340.
- 134.
Gu, D.B.; Sun, J.X.; Hu, Z.; et al. Consensus based distributed particle filter in sensor networks. In Proceedings of IEEE International Conference on Information and Automation, Changsha, China, 20–23 June 2008; IEEE: Changsha, China, 2008; pp. 302–307. doi: 10.1109/ICINFA.2008.4608015
- 135.
Mohammadi, A.; Asif, A. Distributed particle filter implementation with intermittent/irregular consensus convergence. IEEE Trans. Signal Process., 2013, 61: 2572−2587.
- 136.
Yoo, J.; Kim, W.; Kim, H.J. Distributed estimation using online semi-supervised particle filter for mobile sensor networks. IET Control Theory Appl., 2015, 9: 418−427.
- 137.
Xia, N.; Yang, F.W.; Han, Q.L. Distributed event-triggered networked set-membership filtering with partial information transmission. IET Control Theory Appl., 2017, 11: 155−163.
- 138.
Yang, F.W.; Xia, N.; Han, Q.L. Event-based networked islanding detection for distributed solar PV generation systems. IEEE Trans. Ind. Inform., 2017, 13: 322−329.
- 139.
Liu, S.C.; Liu, P.X. Distributed model-based control and scheduling for load frequency regulation of smart grids over limited bandwidth networks. IEEE Trans. Ind. Inform., 2018, 14: 1814−1823.