2504000028
  • Open Access
  • Article
Many-Objective Simulation Optimization for Camp Location Problems in Humanitarian Logistics
  • Yani Xue 1, *,   
  • Miqing Li 2,   
  • Hamid Arabnejad 1,   
  • Diana Suleimenova 1,   
  • Alireza Jahani 1,   
  • Bernhard C. Geiger 3,   
  • Freek Boesjes 4,   
  • Anastasia Anagnostou 1,   
  • Simon J. E. Taylor 1,   
  • Xiaohui Liu 1,   
  • Derek Groen 1, *

Received: 10 Mar 2024 | Accepted: 19 Aug 2024 | Published: 26 Sep 2024

Abstract

Humanitarian organizations face a rising number of people fleeing violence or persecution, people who need their protection and support. When this support is given in the right locations, it can be timely, effective and cost-efficient. Successful refugee settlement planning not only considers the support needs of displaced people, but also local environmental conditions and available resources for ensuring survival and health. It is indeed very challenging to find optimal locations for establishing a new refugee camp that satisfy all these objectives. In this paper, we present a novel formulation of the facility location problem with a simulation-based evolutionary many-objective optimization approach to address this problem. We show how this approach, applied to migration simulations, can inform camp selection decisions by demonstrating it for a recent conflict in South Sudan. Our approach may be applicable to diverse humanitarian contexts, and the experimental results have shown it is capable of providing a set of solutions that effectively balance up to five objectives.

References 

  • 1.
    UNHCR. “Figures at a glance 2023,” United Nations High Commissioner for Refugees. 2024. Available online: https://www.unhcr.org/about-unhcr/who-we-are/figures-glance.
  • 2.
    Estrada, L. E. P.; Groen, D.; Ramirez-Marquez, J. E. A serious video game to support decision making on refugee aid deployment policy. Procedia Comput. Sci., 2017, 108: 205−214. doi: 10.1016/j.procs.2017.05.112
  • 3.
    Ghasemi, P.; Khalili-Damghani, K.; Hafezalkotob, A.; et al. Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning. Appl. Math. Comput., 2019, 350: 105−132. doi: 10.1016/j.amc.2018.12.061
  • 4.
    Rawls, C. G.; Turnquist, M. A. Pre-positioning and dynamic delivery planning for short-term response following a natural disaster. Socio-Econ. Plan. Sci., 2012, 46: 46−54. doi: 10.1016/j.seps.2011.10.002
  • 5.
    Chanta, S.; Sangsawang, O. Shelter-site selection during flood disaster. Lecture Notes Manage. Sci., 2012, 4: 282−288
  • 6.
    Liu, K. L.; Liu, C. C.; Xiang, X.; et al. Testing facility location and dynamic capacity planning for pandemics with demand uncertainty. Eur. J. Oper. Res., 2023, 304: 150−168. doi: 10.1016/j.ejor.2021.11.028
  • 7.
    Devi, Y.; Patra, S.; Singh, S. P. A location-allocation model for influenza pandemic outbreaks: A case study in India. Oper. Manage. Res., 2022, 15: 487−502. doi: 10.1007/s12063-021-00216-w
  • 8.
    Cilali, B.; Barker, K.; González, A. D. A location optimization approach to refugee resettlement decision-making. Sustain. Cities Soc., 2021, 74: 103153. doi: 10.1016/j.scs.2021.103153
  • 9.
    Barzinpour, F.; Esmaeili, V. A multi-objective relief chain location distribution model for urban disaster management. Int. J. Adv. Manuf. Technol., 2014, 70: 1291−1302. doi: 10.1007/s00170-013-5379-x
  • 10.
    Zhao, X. G.; Liang, J.; Meng, J.; et al. An improved quantum particle swarm optimization algorithm for environmental economic dispatch. Expert Syst. Appl., 2020, 152: 113370. doi: 10.1016/j.eswa.2020.113370
  • 11.
    Xue, Y. N.; Li, M. Q.; Shepperd, M.; et al. A novel aggregation-based dominance for Pareto-based evolutionary algorithms to configure software product lines. Neurocomputing, 2019, 364: 32−48. doi: 10.1016/j.neucom.2019.06.075
  • 12.
    Liu, W. B.; Wang, Z. D.; Liu, X. H.; et al. A novel particle swarm optimization approach for patient clustering from emergency departments. IEEE Trans. Evol. Comput., 2019, 23: 632−644. doi: 10.1109/TEVC.2018.2878536
  • 13.
    Pramanik, R.; Sarkar, S.; Sarkar, R. An adaptive and altruistic PSO-based deep feature selection method for Pneumonia detection from Chest X-rays. Appl. Soft Comput., 2022, 128: 109464. doi: 10.1016/j.asoc.2022.109464
  • 14.
    Motaghedi-Larijani, A. Solving the number of cross-dock open doors optimization problem by combination of NSGA-II and multi-objective simulated annealing. Appl. Soft Comput., 2022, 128: 109448. doi: 10.1016/j.asoc.2022.109448
  • 15.
    Mendonça, G. H. M.; Ferreira, F. G. D. C.; Cardoso, R. T. N.; et al. Multi-attribute decision making applied to financial portfolio optimization problem. Expert Syst. Appl., 2020, 158: 113527. doi: 10.1016/j.eswa.2020.113527
  • 16.
    Zhao, M.; Chen, Q. W.; Ma, J.; et al. Optimizing temporary rescue facility locations for large-scale urban environmental emergencies to improve public safety. J. Environ. Inf., 2017, 29: 61−73. doi: 10.3808/jei.201600340
  • 17.
    Groen, D. Simulating refugee movements: Where would you go?. Procedia Comput. Sci., 2016, 80: 2251−2255. doi: 10.1016/j.procs.2016.05.400
  • 18.
    Chen, T.; Li, M. Q. The weights can be harmful: Pareto search versus weighted search in multi-objective search-based software engineering. ACM Trans. Software Eng. Methodol., 2023, 32: 5. doi: 10.1145/3514233
  • 19.
    Suleimenova, D.; Bell, D.; Groen, D. A generalized simulation development approach for predicting refugee destinations. Sci. Rep., 2017, 7: 13377. doi: 10.1038/s41598-017-13828-9
  • 20.
    Manopiniwes, W.; Irohara, T. Stochastic optimisation model for integrated decisions on relief supply chains: Preparedness for disaster response. Int. J. Prod. Res., 2017, 55: 979−996. doi: 10.1080/00207543.2016.1211340
  • 21.
    Hallak, J.; Koyuncu, M.; Miç, P. Determining shelter locations in conflict areas by multiobjective modeling: A case study in northern Syria. Int. J. Disaster Risk Reduct., 2019, 38: 101202. doi: 10.1016/j.ijdrr.2019.101202
  • 22.
    Atta, S.; Mahapatra, P. R. S.; Mukhopadhyay, A. A multi-objective formulation of maximal covering location problem with customers’ preferences: Exploring Pareto optimality-based solutions. Expert Syst. Appl., 2021, 186: 115830. doi: 10.1016/j.eswa.2021.115830
  • 23.
    Deb, K.; Pratap, A.; Agarwal, S.; et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2002, 6: 182−197. doi: 10.1109/4235.996017
  • 24.
    Wang, C.; Wang, Z. Q.; Tian, Y.; et al. A dual-population based evolutionary algorithm for multi-objective location problem under uncertainty of facilities. IEEE Trans. Intell. Transp. Syst., 2022, 23: 7692−7707. doi: 10.1109/TITS.2021.3071786
  • 25.
    Wang, J.; Shen, D. Q.; Yu, M. Z. Multiobjective optimization on hierarchical refugee evacuation and resource allocation for disaster management. Math. Probl. Eng., 2020, 2020: 8395714. doi: 10.1155/2020/8395714
  • 26.
    Boonmee, C.; Arimura, M.; Asada, T. Facility location optimization model for emergency humanitarian logistics. Int. J. Disaster Risk Reduct., 2017, 24: 485−498. doi: 10.1016/j.ijdrr.2017.01.017
  • 27.
    Hunter, S. R.; Applegate, E. A.; Arora, V.; et al. An introduction to multiobjective simulation optimization. ACM Trans. Model. Comput. Simul., 2019, 29: 7. doi: 10.1145/3299872
  • 28.
    Xue, Y. N.; Li, M. Q.; Arabnejad, H.; et al. Camp location selection in humanitarian logistics: A multiobjective simulation optimization approach. In Proceedings of the 22nd International Conference on Computational Science, London, UK, 21-23 June 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 497–504. doi: 10.1007/978-3-031-08757-8_42
  • 29.
    Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput., 2014, 18: 577−601. doi: 10.1109/TEVC.2013.2281535
  • 30.
    Zhang, Q. F.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput., 2007, 11: 712−731. doi: 10.1109/TEVC.2007.892759
  • 31.
    Li, M. Q.; Yang, S. X.; Liu, X. H. Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization. IEEE Trans. Evol. Comput., 2016, 20: 645−665. doi: 10.1109/TEVC.2015.2504730
  • 32.
    Groen, D.; Arabnejad, H.; Suleimenova, D.; et al. FabSim3: An automation toolkit for verified simulations using high performance computing. Comput. Phys. Commun., 2023, 283: 108596. doi: 10.1016/j.cpc.2022.108596
  • 33.
    Suleimenova, D.; Groen, D. How policy decisions affect refugee journeys in south Sudan: A study using automated ensemble simulations. J. Artif. Soc. Soc. Simul., 2020, 23: 2. doi: 10.18564/jasss.4193
  • 34.
    Bosak, B.; Piontek, T.; Karlshoefer, P.; et al. Verification, validation and uncertainty quantification of large-scale applications with QCG-PilotJob. In Proceedings of the 21st International Conference on Computational Science, Krakow, Poland, 16–18 June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 495–501. doi: 10.1007/978-3-030-77977-1_39
  • 35.
    Schweimer, C.; Geiger, B. C.; Wang, M. Z.; et al. A route pruning algorithm for an automated geographic location graph construction. Sci. Rep., 2021, 11: 11547. doi: 10.1038/s41598-021-90943-8
  • 36.
    Deb, K.; Agrawal, R. B. Simulated binary crossover for continuous search space. Complex Syst., 1995, 9: 115−148
  • 37.
    Deb, K.; Goyal, M. A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf., 1996, 26: 30−45
  • 38.
    Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput., 1999, 3: 257−271. doi: 10.1109/4235.797969
  • 39.
    Li, M. Q.; Yao, X. Quality evaluation of solution sets in multiobjective optimisation: A survey. ACM Comput. Surv., 2020, 52: 26. doi: 10.1145/3300148
  • 40.
    Li, M. Q.; Chen, T.; Yao, X. How to evaluate solutions in pareto-based search-based software engineering: A critical review and methodological guidance. IEEE Trans. Software Eng., 2022, 48: 1771−1799. doi: 10.1109/TSE.2020.3036108
  • 41.
    Li, M. Q. Is our archiving reliable? Multiobjective archiving methods on “simple” artificial input sequences. ACM Trans. Evol. Learn. Optim., 2021, 1: 9. doi: 10.1145/3465335
  • 42.
    Li, M. Q.; Zhen, L. L.; Yao, X. How to read many-objective solution sets in parallel coordinates [educational forum]. IEEE Comput. Intell. Mag., 2017, 12: 88−100. doi: 10.1109/MCI.2017.2742869
  • 43.
    Liu, W. B.; Wang, Z. D.; Zeng, N. Y.; et al. A novel randomised particle swarm optimizer. Int. J. Mach. Learn. Cybern., 2021, 12: 529−540. doi: 10.1007/s13042-020-01186-4
  • 44.
    Liu, W. B.; Wang, Z. D.; Yuan, Y.; et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Trans. Cybern., 2021, 51: 1085−1093. doi: 10.1109/TCYB.2019.2925015
  • 45.
    Sheng, M. M.; Chen, S. Y.; Liu, W. B.; et al. A differential evolution with adaptive neighborhood mutation and local search for multi-modal optimization. Neurocomputing, 2022, 489: 309−322. doi: 10.1016/j.neucom.2022.03.013
  • 46.
    Sangaiah, A. K.; Khanduzi, R. Tabu search with simulated annealing for solving a location–protection–disruption in hub network. Appl. Soft Comput., 2022, 114: 108056. doi: 10.1016/j.asoc.2021.108056
Share this article:
How to Cite
Xue, Y.; Li, M.; Arabnejad, H.; Suleimenova, D.; Jahani, A.; C. Geiger, B.; Boesjes, F.; Anagnostou, A.; Taylor, S. J. E.; Liu, X.; Groen, D. Many-Objective Simulation Optimization for Camp Location Problems in Humanitarian Logistics. International Journal of Network Dynamics and Intelligence 2024, 3 (3), 100017. https://doi.org/10.53941/ijndi.2024.100017.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.