2504000030
  • Open Access
  • Article
Guaranteed Cost Intermittent Control for Discrete-Time System: A Data-Driven Method
  • Yi Zou,   
  • Engang Tian *

Received: 10 Sep 2023 | Accepted: 27 Nov 2023 | Published: 24 Sep 2024

Abstract

This paper explores a data-driven method to investigate the stabilization of intermittent controlled discrete-time systems (ICDTSs) with unknown parameter matrices. First, the pre-collected inputstate data is used to supersede the accurate prior system model. Then, in order to obtain the data-dependent stabilization conditions of ICDTSs, a novel relationship is designed among the control width, rest width, and convergence rate. Unlike existing studies on the stabilization of ICDTSs, this paper only needs the collected input-state data. Thus, the time-consuming process of model identification is avoided. In addition, to ensure an acceptable performance level, the data-based guaranteed cost control is also considered, and a new cost function for ICDTSs is correspondingly built. Finally, two simulations are presented to demonstrate the effectiveness of the theoretical analysis.

References 

  • 1.
    Daafouz, J.; Bernussou, J. Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst. Control Lett. 2001 , 43, 355–359. doi: 10.1016/S0167-6911(01)00118-9
  • 2.
    Yang, X.S.; Wan, X.X.; Cheng, Z.S.; et al. Synchronization of switched discrete-time neural networks via quantized output control with actuator fault. IEEE Trans. Neural Netw. Learn. Syst. 2021 , 32, 4191–4201. doi: 10.1109/TNNLS.2020.3017171
  • 3.
    Tripathy, N.S.; Kar, I.N.; Paul, K. Stabilization of uncertain discrete-time linear system with limited communication. IEEE Trans. Autom. Control 2017, 62, 4727–4733. doi: 10.1109/TAC.2016.2626967
  • 4.
    Wang, X.L.; Sun, Y.; Ding, D.R. Adaptive dynamic programming for networked control systems under communication constraints: A survey of trends and techniques. Int. J. Netw. Dyn. Intell. 2022 , 1, 85–98. doi: 10.53941/ijndi0101008
  • 5.
    Zhang, Q.C.; Zhou, Y.Y. Recent advances in non-Gaussian stochastic systems control theory and its applications. Int. J. Netw. Dyn. Intell. 2022 , 1, 111–119. doi: 10.53941/ijndi0101010
  • 6.
    Guo, Y.Q.; Wu, Y.H.; Gui, W.H. Stability of discrete-time systems under restricted switching via logic dynamical generator and STP-based mergence of hybrid states. IEEE Trans. Autom. Control 2022, 67, 3472–3483. doi: 10.1109/TAC.2021.3105319
  • 7.
    Haddad, W.M.; Lee, J. Finite-time stability of discrete autonomous systems. Automatica 2020, 122, 109282. doi: 10.1016/j.automatica.2020.109282
  • 8.
    Shi, C.Y.; Vong, S. Finite-time stability for discrete-time systems with time-varying delay and nonlinear perturbations by weighted inequalities. J. Franklin Inst. 2020 , 357, 294–313. doi: 10.1016/j.jfranklin.2019.09.028
  • 9.
    Zhang, H.F.; Li, K.Z.; Fu, X.C. On pinning control of some typical discrete-time dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 182–188. doi: 10.1016/j.cnsns.2009.01.019
  • 10.
    Qu, F.R.; Zhao, X.; Wang, X.M.; et al. Probabilistic-constrained distributed fusion filtering for a class of time-varying systems over sensor networks: A torus-event-triggering mechanism. Int. J. Syst. Sci. 2022 , 53, 1288–1297. doi: 10.1080/00207721.2021.1998721
  • 11.
    Yang, X.S.; Feng, G.Y.; He, C.T.; et al. Event-triggered dynamic output quantization control of switched T-S fuzzy systems with unstable modes. IEEE Trans. Fuzzy Syst., 2022, 30: 4201−4210. doi: 10.1109/TFUZZ.2022.3145808
  • 12.
    Zhang, Y.Q.; Mu, X.W. Event-triggered output quantized control of discrete Markovian singular systems. Automatica, 2022, 135: 109992. doi: 10.1016/j.automatica.2021.109992
  • 13.
    Liu, L.; Perc, M.; Cao, J.D. Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control. Sci. China Inf. Sci., 2019, 62: 72201. doi: 10.1007/s11432-018-9600-3
  • 14.
    Liu, B.; Yang, M.; Liu, T.; et al. Stabilization to exponential input-to-state stability via aperiodic intermittent control. IEEE Trans. Autom. Control, 2021, 66: 2913−2919. doi: 10.1109/TAC.2020.3014637
  • 15.
    Rabiee, A.; Soroudi, A. Stochastic multiperiod OPF model of power systems with HVDC-connected intermittent wind power generation. IEEE Trans. Power Delivery, 2014, 29: 336−344. doi: 10.1109/TPWRD.2013.2259600
  • 16.
    Li, Y.; Zhang, H.B.; Xu, X.Z. Virtual-clock-dependent H∞ controller design for discrete-time switched interval type-2 fuzzy systems with intermittent control inputs. Inf. Sci., 2022, 595: 38−53. doi: 10.1016/j.ins.2022.02.013
  • 17.
    Xiao, Z.J.; Guo, Y.R.; Li, J.Y.; et al. Anti-synchronization for Markovian neural networks via asynchronous intermittent control. Neurocomputing, 2023, 528: 217−225. doi: 10.1016/j.neucom.2023.01.066
  • 18.
    Wang, P.F.; He, Q.J.; Su, H. Stabilization of discrete-time stochastic delayed neural networks by intermittent control. IEEE Trans. Cybern., 2023, 53: 2017−2027. doi: 10.1109/TCYB.2021.3108574
  • 19.
    Wang, P.F.; Zhang, Q.; Su, H. Aperiodically intermittent control for synchronization of discrete-time delayed neural networks. J. Franklin Inst., 2022, 359: 4915−4937. doi: 10.1016/j.jfranklin.2022.04.033
  • 20.
    Tao, H.M.; Tan, H.L.; Chen, Q. W.; et al. H∞ state estimation for memristive neural networks with randomly occurring DoS attacks. Syst. Sci. Control Eng., 2022, 10: 154−165. doi: 10.1080/21642583.2022.2048322
  • 21.
    Pinto, E.R.; Nepomuceno, E.G.; Campanharo, A.S.L.O. Individual-based modelling of animal brucellosis spread with the use of complex networks. Int. J. Netw. Dyn. Intell., 2022, 1: 120−129. doi: 10.53941/ijndi0101011
  • 22.
    Hu, S.; Yin, X.; Zhang, Y.; et al. Event-triggered guaranteed cost control for uncertain discrete-time networked control systems with time-varying transmission delays. IET Control Theory Appl., 2012, 6: 2793−2804. doi: 10.1049/iet-cta.2012.0036
  • 23.
    Yan, H.C.; Zhang, H.; Yang, F.W.; et al. Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading. IEEE Trans. Neural Netw. Learn. Syst., 2018, 29: 3588−3598. doi: 10.1109/TNNLS.2017.2732240
  • 24.
    Xue, M.; Yan, H.C.; Zhang, H.; et al. Event-triggered guaranteed cost controller design for T-S fuzzy Markovian jump systems with partly unknown transition probabilities. IEEE Trans. Fuzzy Syst., 2021, 29: 1052−1064. doi: 10.1109/TFUZZ.2020.2968866
  • 25.
    Mei, J.; Lu, Z.Y.; Hu, J.H.; et al. Energy-efficient optimal guaranteed cost intermittent-switch control of a direct expansion air conditioning system. IEEE/CAA J. Autom. Sin., 2021, 8: 1852−1866. doi: 10.1109/JAS.2020.1003447
  • 26.
    Hu, J.H.; Ruan, Z.Y.; Mei, J.; et al. Optimal guaranteed cost intermittent control to the efficient movement of freight trains. ISA Trans., 2022, 130: 235−252. doi: 10.1016/j.isatra.2022.03.030
  • 27.
    Luo, Y.P.; Wang, X.E.; Cao, J.D. Guaranteed-cost finite-time consensus of multi-agent systems via intermittent control. Math. Methods Appl. Sci., 2022, 45: 697−717. doi: 10.1002/mma.7806
  • 28.
    Ljung, L. System Identification: Theory for the User; Prentice-Hall: Englewood Cliffs, USA, 1987 .
  • 29.
    Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory-Implementation-Applications; Springer: New York, USA, 1996 .
  • 30.
    Li, H.; Wu, P.S.; Zeng, N.Y.; et al. A survey on parameter identification, state estimation and data analytics for lateral flow immunoassay: From systems science perspective. Int. J. Syst. Sci., 2022, 53: 3556−3576. doi: 10.1080/00207721.2022.2083262
  • 31.
    van Waarde, H.J.; Eising, J.; Trentelman, H.L.; et al. Data informativity: A new perspective on data-driven analysis and control. IEEE Trans. Autom. Control, 2020, 65: 4753−4768. doi: 10.1109/TAC.2020.2966717
  • 32.
    Qi, W.L.; Liu, K.Z.; Wang, R.; et al. Data-driven L2-stability analysis for dynamic event-triggered networked control systems: A hybrid system approach. IEEE Trans. Ind. Electron., 2023, 70: 6151−6158. doi: 10.1109/TIE.2022.3194657
  • 33.
    Gao, W.N.; Jiang, Y.; Davari, M. Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming. IEEE Trans. Circuits Syst. II: Express Briefs 2019, 66, 447–451. doi: 10.1109/TCSII.2018.2849639
  • 34.
    Liu, H.; Li, X.J.; Deng, C.; et al. Fault estimation and control for unknown discrete-time systems based on data-driven parameterization approach. IEEE Trans. Cybern. 2023 , 53, 1629–1640. doi: 10.1109/TCYB.2021.3107425
  • 35.
    Ji, D.A.; Wang, C.; Li, J.H.; et al. A review: Data driven-based fault diagnosis and RUL prediction of petroleum machinery and equipment. Syst. Sci. Control Eng. 2021 , 9, 724–747. doi: 10.1080/21642583.2021.1992684
  • 36.
    Rueda-Escobedo, J.G.; Fridman, E.; Schiffer, J. Data-driven control for linear discrete-time delay systems. IEEE Trans. Autom. Control 2022, 67, 3321–3336. doi: 10.1109/TAC.2021.3096896
  • 37.
    De Persis, C.; Tesi, P. Formulas for data-driven control: Stabilization, optimality, and robustness. IEEE Trans. Autom. Control 2020, 65, 909–924. doi: 10.1109/TAC.2019.2959924
  • 38.
    Li, Y.F.; Wang, X.; Sun, J.; et al. Data-driven consensus control of fully distributed event-triggered multi-agent systems. Sci. China Inf. Sci. 2023 , 66, 152202. doi: 10.1007/s11432-022-3629-1
  • 39.
    Wang, X.; Sun, J.; Wang, G.; et al. Data-driven control of distributed event-triggered network systems. IEEE/CAA J. Autom. Sin. 2023 , 10, 351–364. doi: 10.1109/JAS.2023.123225
  • 40.
    Wildhagen, S.; Berberich, J.; Hertneck, M.; et al. Data-driven analysis and controller design for discrete-time systems under aperiodic sampling. IEEE Trans. Autom. Control 2023, 68, 3210–3225. doi: 10.1109/TAC.2022.3183969
  • 41.
    Sun, Y.C.; Fan, Q.Y.; Li, H.X.; et al. Data-driven fault-tolerant control for discrete-time systems based on LMI. IFAC-PapersOnLine 2022, 55, 160–165. doi: 10.1016/j.ifacol.2022.05.028
  • 42.
    Willems, J.C.; Rapisarda, P.; Markovsky, I.; et al. A note on persistency of excitation. Syst. Control Lett. 2005 , 54, 325–329. doi: 10.1016/j.sysconle.2004.09.003
  • 43.
    Shafarevich, I.R.; Remizov, A.O. Linear Algebra and Geometry; Springer: Berlin Heidelberg, 2013 .
  • 44.
    Boyd, S.; Balakrishnan, V.; Feron, E.; et al. Control system analysis and synthesis via linear matrix inequalities. In Proceedings of 1993 American Control Conference, San Francisco, CA, USA, 2–4 June 1993; IEEE: New York, USA, 1993; pp. 2147–2154. doi: 10.23919/ACC.1993.4793262
  • 45.
    Walsh, G.C.; Ye, H. Scheduling of networked control systems. IEEE Control Syst. Mag. 2001 , 21, 57–65. doi: 10.1109/37.898792
Share this article:
How to Cite
Zou, Y.; Tian, E. Guaranteed Cost Intermittent Control for Discrete-Time System: A Data-Driven Method. International Journal of Network Dynamics and Intelligence 2024, 3 (3), 100015. https://doi.org/10.53941/ijndi.2024.100015.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.