- 1.
Lohtander, T.; Arola, S.; Laaksonen, P. Biomordanting willow bark dye on cellulosic materials. Color. Technol., 2020, 136: 3−14.
- 2.
Rahaman, G.M.A.; Parkkinen, J.; Hauta-Kasari, M. A novel approach to using spectral imaging to classify dyes in colored fibers. Sensors (Basel) 2020, 20, 4379. doi:10.3390/s20164379
- 3.
Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1901, 2: 559−572.
- 4.
Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol., 1933, 24: 498−520.
- 5.
Arabie, P.; Hubert, L.; De Soete, G. Clustering and Classification; World Scientific: River Edge, 1996.
- 6.
Davies D. L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. doi:10.1109/TPAMI.1979.4766909
- 7.
Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 1987, 20: 53−65.
- 8.
MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 21 June-18 July 1965 and 27 December 1965-7 January 1966; Statistical Laboratory of the University of California: Berkeley, 1967; pp. 281–297.
- 9.
Bezdek, J.C. A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 1–8. doi:10.1109/TPAMI.1980.4766964
- 10.
Ester, M.; Kriegel, H.P.; Sander, J.; et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 2–4 August 1996; AAAI Press: Portland, 1996; pp. 226–231.
- 11.
Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; et al. OPTICS: Ordering points to identify the clustering structure. ACM SIGMOD Rec., 1999, 28: 49−60.
- 12.
Kohonen, T. The self-organizing map. Proc. IEEE, 1990, 78: 1464−1480.
- 13.
Kohonen, T.; Oja, E.; Simula, O.; et al. Engineering applications of the self-organizing map. Proc. IEEE, 1996, 84: 1358−1384.
- 14.
Merkl D.; Rauber, A. Uncovering the hierarchical structure of text archives by using an unsupervised neural network with adaptive architecture. In Knowledge Discovery and Data Mining. Current Issues and New Applications; Terano, T.; Liu, H.; Chen, A.L.P., Eds.; Springer: Berlin Heidelberg, 2000; pp. 384–395.