- 1.
Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; et al, Brain–computer interfaces for communication and control. Clin. Neurophysiol., 2002, 113: 767−791.
- 2.
Krepki, R.; Blankertz, B.; Curio, G.; et al, The berlin brain-computer interface (BBCI)–towards a new communication channel for online control in gaming applications. Multimed. Tools Appl., 2007, 33: 73−90.
- 3.
Huang, M.J.; Zheng, Y.T.; Zhang, J.J.; et al, Design of a hybrid brain-computer interface and virtual reality system for post-stroke rehabilitation. IFAC-Papersonline, 2020, 53: 16010−16015.
- 4.
Wang, L.; Huang, M.J.; Yang, R.; et al. Survey of movement reproduction in immersive virtual rehabilitation. IEEE Trans. Vis. Comput. Graph. 2022, in press. doi:
10.1109/TVCG.2022.3142198 - 5.
Haas, L.F, FHans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J. Neurol. Neurosurg. Psychiatry, 2003, 74: 9.
- 6.
da Silva, F. L. EEG: Origin and measurement. In EEG-fMRI; Mulert, C.; Lemieux, L., Eds.; Springer: Berlin, 2009; pp. 19–38. doi:
10.1007/978-3-540-87919-0_2 - 7.
Lim, S.B.; Louie, D.R.; Peters, S.; et al, Brain activity during real-time walking and with walking interventions after stroke: A systematic review. J. Neuroeng. Rehabil., 2021, 18: 8.
- 8.
Kline, A.; Ghiroaga, C.G.; Pittman, D.; et al, EEG differentiates left and right imagined lower limb movement. Gait Posture, 2021, 84: 148−154.
- 9.
Ahn, M.; Ahn, S.; Hong, J.H.; et al, Gamma band activity associated with BCI performance: Simultaneous MEG/EEG study. Front. Human Neurosci., 2013, 7: 848.
- 10.
Chen, Y.; Yang, R.; Huang, M.J.; et al, Single-source to single-target cross-subject motor imagery classification based on multisubdomain adaptation network. IEEE Trans. Neural Syst. Rehabil. Eng., 2022, 30: 1992−2002.
- 11.
Wan, Z.T.; Yang, R.; Huang, M.J.; et al, EEG fading data classification based on improved manifold learning with adaptive neighborhood selection. Neurocomputing, 2022, 482: 186−196.
- 12.
Mathur, P.; Chakka, V.K, Graph signal processing based cross-subject mental task classification using multi-channel EEG signals. IEEE Sens. J., 2022, 22: 7971−7978.
- 13.
Chang, Z.Y.; Zhang, C.C.; Li, C. J, Motor imagery EEG classification based on transfer learning and multi-scale convolution network. Micromachines, 2022, 13: 927.
- 14.
Yang, L.; Song, Y.H.; Ma, K.; et al, Motor imagery EEG decoding method based on a discriminative feature learning strategy. IEEE Trans. Neural Syst. Rehabil. Eng., 2021, 29: 368−379.
- 15.
Wang, X.Y.; Yang, R.; Huang, M. J, An unsupervised deep-transfer-learning-based motor imagery EEG classification scheme for brain–computer interface. Sensors, 2022, 22: 2241.
- 16.
Wang, Q.H.; Liu, F.; Wan, G.H.; et al, Inference of brain states under anesthesia with meta learning based deep learning models. IEEE Trans. Neural Syst. Rehabil. Eng., 2022, 30: 1081−1091.
- 17.
Wan, Z.T.; Yang, R.; Huang, M.J.; et al, A review on transfer learning in EEG signal analysis. Neurocomputing, 2021, 421: 1−14.
- 18.
Ji, D.A.; Wang, C.; Li, J.H.; et al, A review: Data driven-based fault diagnosis and RUL prediction of petroleum machinery and equipment. Syst. Sci. Control Eng., 2021, 9: 724−747.
- 19.
Wang, Y.Z.; Zou, L.; Ma, L.F.; et al, A survey on control for Takagi-Sugeno fuzzy systems subject to engineering-oriented complexities. Syst. Sci. Control Eng., 2021, 9: 334−349.
- 20.
Hu, J.; Jia, C.Q.; Liu, H.J.; et al, A survey on state estimation of complex dynamical networks. Int. J. Syst. Sci., 2021, 52: 3351−3367.
- 21.
Wan, Z.T.; Yang, R.; Huang, M.J.; et al, Segment alignment based cross-subject motor imagery classification under fading data. Comput. Biol. Med., 2022, 151: 106267.
- 22.
Zhang, X.X.; She, Q.S.; Chen, Y.; et al, Sub-band target alignment common spatial pattern in brain-computer interface. Comput. Methods Programs Biomed., 2021, 207: 106150.
- 23.
Koles, Z.J.; Lazar, M.S.; Zhou, S. Z, Spatial patterns underlying population differences in the background EEG. Brain Topogr., 1990, 2: 275−284.
- 24.
Müller-Gerking, J.; Pfurtscheller, G.; Flyvbjerg, H, Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol., 1999, 110: 787−798.
- 25.
Decety, J, The neurophysiological basis of motor imagery. Behav. Brain Res., 1996, 77: 45−52.
- 26.
Pfurtscheller, G.; Aranibar, A, Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol., 1977, 42: 817−826.
- 27.
Pfurtscheller, G.; da Silva, F. L, Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol., 1999, 110: 1842−1857.
- 28.
Krause, C.M.; Pörn, B.; Lang, A.H.; et al, Relative alpha desynchronization and synchronization during speech perception. Cognit. Brain Res., 1997, 5: 295−299.
- 29.
Ju, Y.M.; Tian, X.; Liu, H.J.; et al, Fault detection of networked dynamical systems: A survey of trends and techniques. Int. J. Syst. Sci., 2021, 52: 3390−3409.
- 30.
Lemm, S.; Blankertz, B.; Curio, G.; et al, Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng., 2005, 52: 1541−1548.
- 31.
Onaran, I.; İnce, N.F. Extraction of spatially sparse common spatio-spectral filters with recursive weight elimination. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering, San Diego, 06–08 November 2013; IEEE: San Diego, 2013; pp. 1291–1294. doi:
10.1109/NER.2013.6696177 - 32.
Jin, J.; Miao, Y.Y.; Daly, I.; et al, Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw., 2019, 118: 262−270.
- 33.
Geng, H.; Liu, H.J.; Ma, L.F.; et al, Multi-sensor filtering fusion meets censored measurements under a constrained network environment: Advances, challenges and prospects. Int. J. Syst. Sci., 2021, 52: 3410−3436.
- 34.
Novi, Q.; Guan, C.T.; Dat, T.H.; et al. Sub-band common spatial pattern (SBCSP) for brain-computer interface. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, 02–05 May 2007; IEEE: Kohala Coast, 2007; pp. 204–207. doi:
10.1109/CNE.2007.369647 - 35.
Ang, K.K.; Chin, Z.Y.; Zhang, H.H.; et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 01–08 June 2008; IEEE: Hong Kong, China, 2008; pp. 2390–2397. doi:
10.1109/IJCNN.2008.4634130 - 36.
Higashi, H.; Tanaka, T, Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans. Biomed. Eng., 2013, 60: 1100−1110.
- 37.
Mousavi, E.A.; Maller, J.J.; Fitzgerald, P.B.; et al, Wavelet common spatial pattern in asynchronous offline brain computer interfaces. Biomed. Signal Process. Control, 2011, 6: 121−128.
- 38.
Zhang, Y.; Nam, C.S.; Zhou, G.X.; et al, Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern., 2019, 49: 3322−3332.
- 39.
Cheng, H.J.; Wang, Z.D.; Wei, Z.H.; et al, On adaptive learning framework for deep weighted sparse autoencoder: A multiobjective evolutionary algorithm. IEEE Trans. Cybern., 2022, 52: 3221−3231.
- 40.
Sun, J.Y.; Wang, Z.D.; Yu, H.; et al, Two-stage deep regression enhanced depth estimation from a single RGB image. IEEE Trans. Emerging Topics Comput., 2022, 10: 719−727.
- 41.
Lotte, F.; Guan, C. T, Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Trans. Biomed. Eng., 2011, 58: 355−362.
- 42.
He, H.; Wu, D.R. Spatial filtering for brain computer interfaces: A comparison between the common spatial pattern and its variant. In Proceedings of 2018 IEEE International Conference on Signal Processing, Communications and Computing, Qingdao, 14–16 September 2018; IEEE: Qingdao, 2018; pp. 1–6. doi:
10.1109/ICSPCC.2018.8567789 - 43.
Kachenoura, A.; Albera, L.; Senhadji, L.; et al, ICA: A potential tool for BCI systems. IEEE Signal Process. Mag., 2008, 25: 57−68.
- 44.
Delorme, A.; Makeig, S, EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods, 2004, 134: 9−21.
- 45.
Blankertz, B.; Muller, K.R.; Krusienski, D.J.; et al, The BCI competition Ⅲ: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng., 2006, 14: 153−159.
- 46.
Song, B.Y.; Miao, H.M.; Xu, L, Path planning for coal mine robot via improved ant colony optimization algorithm. Syst. Sci. Control Eng., 2021, 9: 283−289.
- 47.
Xu, L.; Song, B.Y.; Cao, M. Y, An improved particle swarm optimization algorithm with adaptive weighted delay velocity. Syst. Sci. Control Eng., 2021, 9: 188−197.
- 48.
Jia, X. C, Resource-efficient and secure distributed state estimation over wireless sensor networks: A survey. Int. J. Syst. Sci., 2021, 52: 3368−3389.