2504000032
  • Open Access
  • Survey/Review Study
Deep Common Spatial Pattern based Motor Imagery Classification with Improved Objective Function
  • Nanxi Yu 1, 2,   
  • Rui Yang 1,   
  • Mengjie Huang 1, *

Received: 12 Oct 2022 | Accepted: 28 Nov 2022 | Published: 22 Dec 2022

Abstract

Common spatial pattern (CSP) technique has been very popular in terms of electroencephalogram (EEG) features extraction in motor imagery (MI)-based brain-computer interface (BCI). Through the simultaneous diagonalization of the covariance matrices, CSP intends to transform data into another mapping with data of different categories having maximal differences in their measures of dispersion. This paper shows the objective function realized by original CSP method could be inaccurate by regularizing the estimated spatial covariance matrix from EEG data by trace, leading to some flaws in the features to be extracted. In order to deal with this problem, a novel deep CSP (DCSP) model with optimal objective function is proposed in this paper. The benefits of the proposed DCSP method over original CSP method are verified with experiments on two EEG based MI datasets where the classification accuracy is effectively improved.

Graphical Abstract

References 

  • 1.
    Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; et al, Brain–computer interfaces for communication and control. Clin. Neurophysiol., 2002, 113: 767−791.
  • 2.
    Krepki, R.; Blankertz, B.; Curio, G.; et al, The berlin brain-computer interface (BBCI)–towards a new communication channel for online control in gaming applications. Multimed. Tools Appl., 2007, 33: 73−90.
  • 3.
    Huang, M.J.; Zheng, Y.T.; Zhang, J.J.; et al, Design of a hybrid brain-computer interface and virtual reality system for post-stroke rehabilitation. IFAC-Papersonline, 2020, 53: 16010−16015.
  • 4.
    Wang, L.; Huang, M.J.; Yang, R.; et al. Survey of movement reproduction in immersive virtual rehabilitation. IEEE Trans. Vis. Comput. Graph. 2022, in press. doi: 10.1109/TVCG.2022.3142198
  • 5.
    Haas, L.F, FHans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J. Neurol. Neurosurg. Psychiatry, 2003, 74: 9.
  • 6.
    da Silva, F. L. EEG: Origin and measurement. In EEG-fMRI; Mulert, C.; Lemieux, L., Eds.; Springer: Berlin, 2009; pp. 19–38. doi: 10.1007/978-3-540-87919-0_2
  • 7.
    Lim, S.B.; Louie, D.R.; Peters, S.; et al, Brain activity during real-time walking and with walking interventions after stroke: A systematic review. J. Neuroeng. Rehabil., 2021, 18: 8.
  • 8.
    Kline, A.; Ghiroaga, C.G.; Pittman, D.; et al, EEG differentiates left and right imagined lower limb movement. Gait Posture, 2021, 84: 148−154.
  • 9.
    Ahn, M.; Ahn, S.; Hong, J.H.; et al, Gamma band activity associated with BCI performance: Simultaneous MEG/EEG study. Front. Human Neurosci., 2013, 7: 848.
  • 10.
    Chen, Y.; Yang, R.; Huang, M.J.; et al, Single-source to single-target cross-subject motor imagery classification based on multisubdomain adaptation network. IEEE Trans. Neural Syst. Rehabil. Eng., 2022, 30: 1992−2002.
  • 11.
    Wan, Z.T.; Yang, R.; Huang, M.J.; et al, EEG fading data classification based on improved manifold learning with adaptive neighborhood selection. Neurocomputing, 2022, 482: 186−196.
  • 12.
    Mathur, P.; Chakka, V.K, Graph signal processing based cross-subject mental task classification using multi-channel EEG signals. IEEE Sens. J., 2022, 22: 7971−7978.
  • 13.
    Chang, Z.Y.; Zhang, C.C.; Li, C. J, Motor imagery EEG classification based on transfer learning and multi-scale convolution network. Micromachines, 2022, 13: 927.
  • 14.
    Yang, L.; Song, Y.H.; Ma, K.; et al, Motor imagery EEG decoding method based on a discriminative feature learning strategy. IEEE Trans. Neural Syst. Rehabil. Eng., 2021, 29: 368−379.
  • 15.
    Wang, X.Y.; Yang, R.; Huang, M. J, An unsupervised deep-transfer-learning-based motor imagery EEG classification scheme for brain–computer interface. Sensors, 2022, 22: 2241.
  • 16.
    Wang, Q.H.; Liu, F.; Wan, G.H.; et al, Inference of brain states under anesthesia with meta learning based deep learning models. IEEE Trans. Neural Syst. Rehabil. Eng., 2022, 30: 1081−1091.
  • 17.
    Wan, Z.T.; Yang, R.; Huang, M.J.; et al, A review on transfer learning in EEG signal analysis. Neurocomputing, 2021, 421: 1−14.
  • 18.
    Ji, D.A.; Wang, C.; Li, J.H.; et al, A review: Data driven-based fault diagnosis and RUL prediction of petroleum machinery and equipment. Syst. Sci. Control Eng., 2021, 9: 724−747.
  • 19.
    Wang, Y.Z.; Zou, L.; Ma, L.F.; et al, A survey on control for Takagi-Sugeno fuzzy systems subject to engineering-oriented complexities. Syst. Sci. Control Eng., 2021, 9: 334−349.
  • 20.
    Hu, J.; Jia, C.Q.; Liu, H.J.; et al, A survey on state estimation of complex dynamical networks. Int. J. Syst. Sci., 2021, 52: 3351−3367.
  • 21.
    Wan, Z.T.; Yang, R.; Huang, M.J.; et al, Segment alignment based cross-subject motor imagery classification under fading data. Comput. Biol. Med., 2022, 151: 106267.
  • 22.
    Zhang, X.X.; She, Q.S.; Chen, Y.; et al, Sub-band target alignment common spatial pattern in brain-computer interface. Comput. Methods Programs Biomed., 2021, 207: 106150.
  • 23.
    Koles, Z.J.; Lazar, M.S.; Zhou, S. Z, Spatial patterns underlying population differences in the background EEG. Brain Topogr., 1990, 2: 275−284.
  • 24.
    Müller-Gerking, J.; Pfurtscheller, G.; Flyvbjerg, H, Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol., 1999, 110: 787−798.
  • 25.
    Decety, J, The neurophysiological basis of motor imagery. Behav. Brain Res., 1996, 77: 45−52.
  • 26.
    Pfurtscheller, G.; Aranibar, A, Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol., 1977, 42: 817−826.
  • 27.
    Pfurtscheller, G.; da Silva, F. L, Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol., 1999, 110: 1842−1857.
  • 28.
    Krause, C.M.; Pörn, B.; Lang, A.H.; et al, Relative alpha desynchronization and synchronization during speech perception. Cognit. Brain Res., 1997, 5: 295−299.
  • 29.
    Ju, Y.M.; Tian, X.; Liu, H.J.; et al, Fault detection of networked dynamical systems: A survey of trends and techniques. Int. J. Syst. Sci., 2021, 52: 3390−3409.
  • 30.
    Lemm, S.; Blankertz, B.; Curio, G.; et al, Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng., 2005, 52: 1541−1548.
  • 31.
    Onaran, I.; İnce, N.F. Extraction of spatially sparse common spatio-spectral filters with recursive weight elimination. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering, San Diego, 06–08 November 2013; IEEE: San Diego, 2013; pp. 1291–1294. doi: 10.1109/NER.2013.6696177
  • 32.
    Jin, J.; Miao, Y.Y.; Daly, I.; et al, Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw., 2019, 118: 262−270.
  • 33.
    Geng, H.; Liu, H.J.; Ma, L.F.; et al, Multi-sensor filtering fusion meets censored measurements under a constrained network environment: Advances, challenges and prospects. Int. J. Syst. Sci., 2021, 52: 3410−3436.
  • 34.
    Novi, Q.; Guan, C.T.; Dat, T.H.; et al. Sub-band common spatial pattern (SBCSP) for brain-computer interface. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, 02–05 May 2007; IEEE: Kohala Coast, 2007; pp. 204–207. doi: 10.1109/CNE.2007.369647
  • 35.
    Ang, K.K.; Chin, Z.Y.; Zhang, H.H.; et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 01–08 June 2008; IEEE: Hong Kong, China, 2008; pp. 2390–2397. doi: 10.1109/IJCNN.2008.4634130
  • 36.
    Higashi, H.; Tanaka, T, Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans. Biomed. Eng., 2013, 60: 1100−1110.
  • 37.
    Mousavi, E.A.; Maller, J.J.; Fitzgerald, P.B.; et al, Wavelet common spatial pattern in asynchronous offline brain computer interfaces. Biomed. Signal Process. Control, 2011, 6: 121−128.
  • 38.
    Zhang, Y.; Nam, C.S.; Zhou, G.X.; et al, Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern., 2019, 49: 3322−3332.
  • 39.
    Cheng, H.J.; Wang, Z.D.; Wei, Z.H.; et al, On adaptive learning framework for deep weighted sparse autoencoder: A multiobjective evolutionary algorithm. IEEE Trans. Cybern., 2022, 52: 3221−3231.
  • 40.
    Sun, J.Y.; Wang, Z.D.; Yu, H.; et al, Two-stage deep regression enhanced depth estimation from a single RGB image. IEEE Trans. Emerging Topics Comput., 2022, 10: 719−727.
  • 41.
    Lotte, F.; Guan, C. T, Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Trans. Biomed. Eng., 2011, 58: 355−362.
  • 42.
    He, H.; Wu, D.R. Spatial filtering for brain computer interfaces: A comparison between the common spatial pattern and its variant. In Proceedings of 2018 IEEE International Conference on Signal Processing, Communications and Computing, Qingdao, 14–16 September 2018; IEEE: Qingdao, 2018; pp. 1–6. doi: 10.1109/ICSPCC.2018.8567789
  • 43.
    Kachenoura, A.; Albera, L.; Senhadji, L.; et al, ICA: A potential tool for BCI systems. IEEE Signal Process. Mag., 2008, 25: 57−68.
  • 44.
    Delorme, A.; Makeig, S, EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods, 2004, 134: 9−21.
  • 45.
    Blankertz, B.; Muller, K.R.; Krusienski, D.J.; et al, The BCI competition Ⅲ: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng., 2006, 14: 153−159.
  • 46.
    Song, B.Y.; Miao, H.M.; Xu, L, Path planning for coal mine robot via improved ant colony optimization algorithm. Syst. Sci. Control Eng., 2021, 9: 283−289.
  • 47.
    Xu, L.; Song, B.Y.; Cao, M. Y, An improved particle swarm optimization algorithm with adaptive weighted delay velocity. Syst. Sci. Control Eng., 2021, 9: 188−197.
  • 48.
    Jia, X. C, Resource-efficient and secure distributed state estimation over wireless sensor networks: A survey. Int. J. Syst. Sci., 2021, 52: 3368−3389.
Share this article:
How to Cite
Yu, N.; Yang, R.; Huang, M. Deep Common Spatial Pattern based Motor Imagery Classification with Improved Objective Function. International Journal of Network Dynamics and Intelligence 2022, 1 (1), 73–84. https://doi.org/10.53941/ijndi0101007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.