2504000035
  • Open Access
  • Article
Emotion Contagion Model for Dynamical Crowd Path Planning
  • Yunpeng Wu 1,   
  • Xiangming Huang 1,   
  • Zhen Tian 1,   
  • Xiaoqiang Yan 1, *,   
  • Hui Yu 2, *

Received: 17 Dec 2023 | Accepted: 23 Apr 2024 | Published: 24 Sep 2024

Abstract

Crowd path planning aims to find the optimal path between the source and destination for multiple agents in crowd scenes. The advent of parallel theory and digital twin technologies provides a novel platform for simulating crowd path planning, which has become increasingly popular in various applications, such as pedestrian evacuation, intelligent transportation, and civil planning. The widely used strategy for crowd path planning emphasizes the objective factors, such as user-specific guidance, shortest path and crowd density. However, this strategy ignores the subjective emotion of agents, which can have significant impact on the diverse path choices of each agent. To tackle this challenge, we present a novel Emotion Contagion Model (ECM) to dynamically conduct path planning in crowded environments by incorporating the emotion of each agent. The proposed method provides a solution to the long-standing high-level affective issue for virtual agents during path search. Firstly, to bridge the gap between emotion states and path choices, the emotion preference is defined based on personality traits of multiple agents. Secondly, an emotion contagion algorithm is proposed to recognize the collective patterns of these agents, which can reveal the dynamical variation of emotion preference under crowded complex environments. Finally, to solve the emotion-to-path mapping, we propose a leastexpected-time objective function to find the optimal path choice for each agent according to the navigation graph in the given scenario. Experimental results on various scenarios, including the subway station, railway station square, fire evacuation and indoor environment, verify the effectiveness of the ECM compared with the state-of-the-art methods.

References 

  • 1.
    Li, Y.; Lu, X.Y.; Wang, J.Q.; et al. Pedestrian trajectory prediction combining probabilistic reasoning and sequence learning. IEEE Trans. Intell. Veh., 2020, 5: 461−474. doi: 10.1109/TIV.2020.2966117
  • 2.
    Liao, X.S.; Zhao, X.P.; Wang, Z.R.; et al. Game theory-based ramp merging for mixed traffic with unity-sumo co-simulation. IEEE Trans. Syst., Man, Cybern.: Syst., 2022, 52: 5746−5757. doi: 10.1109/TSMC.2021.3131431
  • 3.
    Wu, Y.; Low, K.H.; Pang, B.Z.; et al. Swarm-based 4D path planning for drone operations in urban environments. IEEE Trans. Veh. Technol., 2021, 70: 7464−7479. doi: 10.1109/TVT.2021.3093318
  • 4.
    Yan, X.Q.; Mao, Y.Q.; Li, M.Y.; et al. Multitask image clustering via deep information bottleneck. IEEE Trans. Cybern., 2024, 54: 1868−1881. doi: 10.1109/TCYB.2023.3273535
  • 5.
    Yan, X.Q.; Mao, Y.Q.; Ye, Y.D.; et al. Cross-modal clustering with deep correlated information bottleneck method. IEEE Trans. Neural Netw. Learn. Syst. 2023 , in press. doi: 10.1109/TNNLS.2023.3269789.
  • 6.
    Yan, X.Q.; Mao, Y.Q.; Ye, Y.D.; et al. Explanation guided cross-modal social image clustering. Inf. Sci., 2022, 593: 1−16. doi: 10.1016/j.ins.2022.01.065
  • 7.
    Yan, X.Q.; Shi, K.Y.; Ye, Y.D.; et al. Deep correlation mining for multi-task image clustering. Expert Syst. Appl., 2022, 187: 115973. doi: 10.1016/j.eswa.2021.115973
  • 8.
    Chen, L.; Hu, X.M.; Tian, W.; et al. Parallel planning: a new motion planning framework for autonomous driving. IEEE/CAA J. Autom. Sin., 2019, 6: 236−246. doi: 10.1109/JAS.2018.7511186
  • 9.
    Wang, F.Y.; Qin, R.; Li, J.J.; et al. Parallel societies: A computing perspective of social digital twins and virtual-real interactions. IEEE Trans. Comput. Soc. Syst., 2020, 7: 2−7. doi: 10.1109/TCSS.2020.2970305
  • 10.
    Yan, X.Q.; Jin, Z.X.; Han, F.S.; et al. Differentiable information bottleneck for deterministic multi-view clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024; pp. 27435–27444.
  • 11.
    Yan, X.Q.; Gan, Y.T.; Mao, Y.Q.; et al. Live and learn: Continual action clustering with incremental views. In Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, 20–27 February 2024; AAAI, 2024; pp. 16264–16271. doi: 10.1609/aaai.v38i15.29561
  • 12.
    Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Comput. Graphics, 1987, 21: 25−34. doi: 10.1145/37402.37406
  • 13.
    Helbing, D.; Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E, 1995, 51: 4282−4286. doi: 10.1103/PhysRevE.51.4282
  • 14.
    Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature, 2000, 407: 487−90. doi: 10.1038/35035023
  • 15.
    van den Berg, J.; Lin, M.; Manocha, D. Reciprocal velocity obstacles for real-time multi-agent navigation. In 2008 IEEE International Conference on Robotics and Automation, Pasadena, 1923 May 2008; IEEE: New York, 2008; pp. 1928–1935. doi: 10.1109/ROBOT.2008.4543489.
  • 16.
    van den Berg, J.; Guy, S.J.; Lin, M.; et al. Reciprocal n-body collision avoidance. In Robotics Research; Pradalier, C.; Siegwart, R.; Hirzinger, G., Eds.; Springer: Berlin/Heidelberg, 2011; pp. 3–19. doi: 10.1007/978-3-642-19457-3_1.
  • 17.
    Hughes, R.; Ondřej, J.; Dingliana, J. Holonomic collision avoidance for virtual crowds. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Copenhagen, 21–23 July 2014; Eurographics Association: Goslar, 2014; pp. 103–111.
  • 18.
    Golas, A.; Narain, R.; Curtis, S.; et al. Hybrid long-range collision avoidance for crowd simulation. IEEE Trans. Visualization Comput. Graphics, 2014, 20: 1022−1034. doi: 10.1109/TVCG.2013.235
  • 19.
    He, L.; Pan, J.; Narang, S.; et al. Dynamic group behaviors for interactive crowd simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Zurich, 11–13 July 2016; Eurographics Association: Goslar, 2016; pp. 139–147.
  • 20.
    Sud, A.; Andersen, E.; Curtis, S.; et al. Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Trans. Visualization Comput. Graphics, 2008, 14: 526−538. doi: 10.1109/TVCG.2008.27
  • 21.
    Patil, S.; van den Berg, J.; Curtis, S.; et al. Directing crowd simulations using navigation fields. IEEE Trans. Visualization Comput. Graphics, 2011, 17: 244−254. doi: 10.1109/TVCG.2010.33
  • 22.
    Kretz, T.; Große, A.; Hengst, S.; et al. Quickest paths in simulations of pedestrians. Adv. Complex Syst., 2011, 14: 733−759. doi: 10.1142/S0219525911003281
  • 23.
    van Toll, W.G.; Cook IV, A.F.; Geraerts, R. Real-time density-based crowd simulation. Comput. Anim. Virtual Worlds, 2012, 23: 59−69. doi: 10.1002/cav.1424
  • 24.
    Zhao, G.Y.; Li, Y.T.; Xu, Q.R. From emotion AI to cognitive AI. Int. J. Netw. Dyn. Intell., 2022, 7: 65−72. doi: 10.53941/ijndi0101006
  • 25.
    Guy, S.J.; Kim, S.; Lin, M.C.; et al. Simulating heterogeneous crowd behaviors using personality trait theory. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vancouver, 5–7 August 2011; ACM: New York, 2011; pp. 43–52. doi: 10.1145/2019406.2019413.
  • 26.
    Kim, S.; Guy, S.J.; Manocha, S.; et al. Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Costa Mesa, 9–11 March 2012; ACM: New York, 2012; pp. 55–62. doi: 10.1145/2159616.2159626.
  • 27.
    Goldberg, L.R. An alternative “description of personality”: The big-five factor structure. J. Pers. Soc. Psychol., 1990, 59: 1216−1229. doi: 10.1037/0022-3514.59.6.1216
  • 28.
    Durupinar, F.; Pelechano, N.; Allbeck, J.; et al. How the ocean personality model affects the perception of crowds. IEEE Comput. Graphics Appl., 2011, 31: 22−31. doi: 10.1109/MCG.2009.105
  • 29.
    Pelechano, N.; Allbeck, J.M.; Badler, N.I. Controlling individual agents in high-density crowd simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, 2–4 August 2007; Eurographics Association: Goslar, 2007; pp. 99–108.
  • 30.
    Loscos, C.; Marchal, D.; Meyer, A. Intuitive crowd behavior in dense urban environments using local laws. In Proceedings of the Theory and Practice of Computer Graphics, Birmingham, 5 June 2003; IEEE: New York, 2003; pp. 122–129. doi: 10.1109/TPCG.2003.1206939.
  • 31.
    Sarmady, S.; Haron, F.; Talib, A.Z.H. Modeling groups of pedestrians in least effort crowd movements using cellular automata. In 2009 Third Asia International Conference on Modelling & Simulation, Bundang, 25–29 May 2009; IEEE: New York, 2009; pp. 520–525. doi: 10.1109/AMS.2009.16.
  • 32.
    Bruneau, J.; Pettré, J. Energy-efficient mid-term strategies for collision avoidance in crowd simulation. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, 7–9 August 2015, ACM: New York, 2015; pp. 119–127. doi: 10.1145/2786784.2786804.
  • 33.
    Guy, S.J.; Chhugani, J.; Kim, C.; et al. ClearPath: Highly parallel collision avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, 1–2 August 2009; ACM: New York, 2009; pp. 177–187. doi: 10.1145/1599470.1599494.
  • 34.
    Guy, S.J.; Chhugani, J.; Curtis, S.; et al. PLEdestrians: A least-effort approach to crowd simulation. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Madrid, 2–4 July 2010, Eurographics Association: Goslar, 2010; pp. 119–128.
  • 35.
    Karamouzas, I.; Overmars, M. Simulating and evaluating the local behavior of small pedestrian groups. IEEE Trans. Visualization Comput. Graphics, 2012, 18: 394−406. doi: 10.1109/TVCG.2011.133
  • 36.
    Lemercier, S.; Auberlet, J.M. Towards more behaviours in crowd simulation. Comput. Anim. Virtual Worlds, 2016, 27: 24−34. doi: 10.1002/cav.1629
  • 37.
    Xiao, J.; Michalewicz, Z.; Zhang, L.X.; et al. Adaptive evolutionary planner/navigator for mobile robots. IEEE Trans. Evol. Comput., 1997, 1: 18−28. doi: 10.1109/4235.585889
  • 38.
    Orozco-Rosas, U.; Montiel, O.; Sepúlveda, R. Mobile robot path planning using membrane evolutionary artificial potential field. Appl. Soft Comput., 2019, 77: 236−251. doi: 10.1016/j.asoc.2019.01.036
  • 39.
    Dian, S.Y.; Zhong, J.N.; Guo, B.; et al. A smooth path planning method for mobile robot using a bes-incorporated modified QPSO algorithm. Expert Syst. Appl., 2022, 208: 118256. doi: 10.1016/j.eswa.2022.118256
  • 40.
    He, L.; van den Berg, J. Meso-scale planning for multi-agent navigation. In 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, 6–10 May 2013; IEEE: New York, 2013; pp. 2839–2844. doi: 10.1109/ICRA.2013.6630970.
  • 41.
    Geraerts, R. Planning short paths with clearance using explicit corridors. In 2010 IEEE International Conference on Robotics and Automation, Anchorage, 3–7 May 2010; IEEE: New York, pp. 1997–2004, 2010. doi: 10.1109/ROBOT.2010.5509263.
  • 42.
    Shi, Y.P.; Zhang, G.J.; Lu, D.J.; et al. Intervention optimization for crowd emotional contagion. Inf. Sci., 2021, 576: 769−789. doi: 10.1016/j.ins.2021.08.056
  • 43.
    Moussaïd, M.; Kapadia, M.; Thrash, T.; et al. Crowd behaviour during high-stress evacuations in an immersive virtual environment. J. R. Soc. Interface, 2016, 13: 20160414. doi: 10.1098/rsif.2016.0414
  • 44.
    Kapadia, M.; Pelechano, N.; Allbeck, J.; et al. Virtual Crowds: Steps Toward Behavioral Realism; Springer: Cham, 2016. doi: 10.1007/978-3-031-02586-0
  • 45.
    Helbing, D.; Buzna, L.; Johansson, A.; et al. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Trans. Sci., 2005, 39: 1−24. doi: 10.1287/trsc.1040.0108
  • 46.
    Durupinar, F.; Kapadia, M.; Deutsch, S.; et al. PERFORM: Perceptual approach for adding OCEAN personality to human motion using laban movement analysis. ACM Trans. Graphics, 2016, 36: 6. doi: 10.1145/2983620
  • 47.
    Durupınar, F.; Güdükbay, U.; Aman, A.; et al. Psychological parameters for crowd simulation: From audiences to mobs. IEEE Trans. Vis. Comput. Graph., 2016, 22: 2145−2159. doi: 10.1109/TVCG.2015.2501801
  • 48.
    Lv, P.; Yu, Q.Q.; Xu, B.Y.; et al. Emotional contagion-aware deep reinforcement learning for antagonistic crowd simulation. IEEE Trans. Affect. Comput., 2023, 14: 2939−2953. doi: 10.1109/TAFFC.2022.3225037
  • 49.
    Xu, M.L.; Li, C.C.; Lv, P.; et al. Emotion-based crowd simulation model based on physical strength consumption for emergency scenarios. IEEE Trans. Intell. Transp. Syst., 2021, 22: 6977−6991. doi: 10.1109/TITS.2020.3000607
  • 50.
    Mao, Y.; Yang, S.W.; Li, Z.N.; et al. Personality trait and group emotion contagion based crowd simulation for emergency evacuation. Multimed. Tools Appll., 2020, 79: 3077−3104. doi: 10.1007/s11042-018-6069-3
  • 51.
    Liu, H.; Lu, D.J.; Zhang, G.J.; et al. Recurrent emotional contagion for the crowd evacuation of a cyber-physical society. Inf. Sci., 2021, 575: 155−172. doi: 10.1016/j.ins.2021.06.036
  • 52.
    Xu, T.F.; Shi, D.D.; Chen, J.; et al. Dynamics of emotional contagion in dense pedestrian crowds. Phys. Lett. A, 2020, 384: 126080. doi: 10.1016/j.physleta.2019.126080
  • 53.
    Coleman, J.S.; James, J. The equilibrium size distribution of freely-forming groups. Sociometry, 1961, 24: 36−45. doi: 10.2307/2785927
  • 54.
    Gorrini, A.; Bandini, S.; Sarvi, M. Group dynamics in pedestrian crowds: Estimating proxemic behavior. Transp. Res. Rec.: J. Transp. Res. Board, 2014, 2421: 51−56. doi: 10.3141/2421-06
  • 55.
    Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science, 2014, 344: 1492−1496. doi: 10.1126/science.1242072
  • 56.
    Wu, Y.P.; Ye, Y.D.; Zhao, C.Y.; et al. Collective density clustering for coherent motion detection. IEEE Trans. Multim., 2018, 20: 1418−1431. doi: 10.1109/TMM.2017.2771477
  • 57.
    Schulz, N.; Vogelhuber, V. Horde3d - next-generation graphics engine. 2006. Available online: http://www.horde3d.org/.
Share this article:
How to Cite
Wu, Y.; Huang, X.; Tian, Z.; Yan, X.; Yu, H. Emotion Contagion Model for Dynamical Crowd Path Planning. International Journal of Network Dynamics and Intelligence 2024, 3 (3), 100014. https://doi.org/10.53941/ijndi.2024.100014.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.