- 1.
Qi, R.Q.; Su, H.; Kaichun, M.; et al. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, 2017; pp. 77–85. doi: 10.1109/CVPR.2017.16
- 2.
Zhang, J.Z.; Zhu, C.Y.; Zheng, L.T.; et al. Fusion-aware point convolution for online semantic 3D scene segmentation. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 4533–4542. doi: 10.1109/CVPR42600.2020.00459
- 3.
Zhang, C.J.; Xu, S.H.; Jiang, T.; et al. Integrating normal vector features into an atrous convolution residual network for LiDAR point cloud classification. Remote Sen., 2021, 13: 3427.
- 4.
Wang, Y.; Sun, Y.B.; Liu, Z.W.; et al. Dynamic graph CNN for learning on point clouds. ACM Trans. Graphics, 2019, 38: 146.
- 5.
Yan, X.; Zheng, C.D.; Li, Z.; et al. PointASNL: Robust point clouds processing using nonlocal neural networks with adaptive sampling. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 5588–5597. doi: 10.1109/CVPR42600.2020.00563
- 6.
Wu, W.X.; Qi, Z.A.; Li, F.X. PointConv: Deep convolutional networks on 3D point clouds. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; pp. 9613–9622. doi: 10.1109/CVPR.2019.00985
- 7.
Woo, S.; Lee, D.; Lee, J.; et al. CKConv: Learning feature voxelization for point cloud analysis. arXiv: 2107.12655, 2021. doi: 10.48550/arXiv.2107.12655
- 8.
Thomas, H.; Qi, C.R.; Deschaud, J.E.; et al. KPConv: Flexible and deformable convolution for point clouds. In Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 27 October 2019 - 02 November 2019; IEEE: New York, 2019; pp. 6410–6419. doi: 10.1109/ICCV.2019.00651
- 9.
Qi, C.R.; Yi, L.; Su, H.; et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 4–9 December 2017; Curran Associates Inc: Red Hook, 2017; pp. 5105–5114.
- 10.
Pham, Q.H.; Nguyen, T.; Hua, B.S.; et al. JSIS3D: Joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; pp. 8819–8828. doi: 10.1109/CVPR.2019.00903
- 11.
Lei, H.; Akhtar, N.; Mian, A. Octree guided CNN with spherical kernels for 3D point clouds. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; pp. 9623–9632. doi: 10.1109/CVPR.2019.00986
- 12.
Hu, Q.Y.; Yang, B.; Xie, L.H.; et al. RandLA-Net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 11105–11114. doi: 10.1109/CVPR42600.2020.01112
- 13.
Engelmann, F.; Bokeloh, M.; Fathi, A.; et al. 3D-MPA: Multi-proposal aggregation for 3D semantic instance segmentation. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 9028–9037. doi: 10.1109/CVPR42600.2020.00905
- 14.
Atzmon, M.; Maron, H.; Lipman, Y. Point convolutional neural networks by extension operators. ACM Trans. Graphics, 2018, 37: 71.
- 15.
Eldar, Y.; Lindenbaum, M.; Porat, M.; et al. The farthest point strategy for progressive image sampling. IEEE Trans. Image Process., 1997, 6: 1305−1315.
- 16.
Li, J.; Chen, B.M.; Lee, G.H. SO-Net: Self-organizing network for point cloud analysis. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, 2018; pp. 9397–9406. doi: 10.1109/CVPR.2018.00979
- 17.
Maturana, D.; Scherer, S. VoxNet: A 3D convolutional neural network for real-time object recognition. In Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September 2015–02 October 2015; IEEE: New York, 2015; pp. 922–928. doi: 10.1109/IROS.2015.7353481
- 18.
Qi, C.R.; Su, H.; Nießner, M.; et al. Volumetric and multi-view CNNs for object classification on 3D data. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, 2016; pp. 5648–5656. doi: 10.1109/CVPR.2016.609
- 19.
Riegler, G.; Osman Ulusoy, A.; Geiger, A. OctNet: Learning deep 3D representations at high resolutions. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, 2017; pp. 6620–6629. doi: 10.1109/CVPR.2017.701
- 20.
Rethage, D.; Wald, J.; Sturm, J.; et al. Fully-convolutional point networks for large-scale point clouds. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, 2018; pp. 625–640. doi: 10.1007/978-3-030-01225-0_37
- 21.
Zhou, Y.; Tuzel, O. VoxelNet: End-to-end learning for point cloud based 3D object detection. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, 2018; pp. 4490–4499. doi: 10.1109/CVPR.2018.00472
- 22.
Zhang, Y.; Zhou, Z.X.; David, P.; et al. PolarNet: An improved grid representation for online LiDAR point clouds semantic segmentation. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 9598–9607. doi: 10.1109/CVPR42600.2020.00962
- 23.
Zhang, W.; Xiao, C.X. PCAN: 3D attention map learning using contextual information for point cloud based retrieval. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; pp. 12428–12437. doi: 10.1109/CVPR.2019.01272
- 24.
Choy, C.; Gwak, J.Y.; Savarese, S. 4D spatio-temporal ConvNets: Minkowski convolutional neural networks. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, 2019; pp. 3070–3079. doi: 10.1109/CVPR.2019.00319
- 25.
Cheng, R.; Razani, R.; Taghavi, E.; et al. (AF)2-S3Net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; IEEE: New York, 2021; pp. 12542–12551. doi: 10.1109/CVPR46437.2021.01236
- 26.
Wang, Z.; Lu, F. VoxSegNet: Volumetric CNNs for semantic part segmentation of 3D shapes. IEEE Trans. Vis. Comput. Graph., 2020, 26: 2919−2930.
- 27.
Liu, Z.J.; Tang, H.T.; Lin, Y.J.; et al. Point-voxel CNN for efficient 3D deep learning. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates Inc: Red Hook, 2019; p. 87.
- 28.
Tang, H.T.; Liu, Z.J.; Zhao, S.Y.; et al. Searching efficient 3D architectures with sparse point-voxel convolution. In Proceedings of 16th European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, 2020; pp. 685–702. doi: 10.1007/978-3-030-58604-1_41
- 29.
Xu, J.Y.; Zhang, R.X.; Dou, J.; et al. RPVNet: A deep and efficient range-point-voxel fusion network for LiDAR point cloud segmentation. In Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; IEEE: New York, 2021; pp. 16004–16013. doi: 10.1109/ICCV48922.2021.01572
- 30.
Zhu, X.G.; Zhou, H.; Wang, T.; et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR-based perception. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 44: 6807−6822.
- 31.
Li, Y.Y.; Bu, R.; Sun, M.C.; et al. PointCNN: Convolution on X-transformed points. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 3–8 December 2018; Curran Associates Inc: Red Hook, 2018; pp. 828–838.
- 32.
Liu, Y.C.; Fan, B.; Xiang, S.M.; et al. Relation-shape convolutional neural network for point cloud analysis. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; 2019; pp. 8887–8896. doi: 10.1109/CVPR.2019.00910
- 33.
Wang, C.; Samari, B.; Siddiqi, K. Local spectral graph convolution for point set feature learning. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, 2018; pp. 56–71. doi: 10.1007/978-3-030-01225-0_4
- 34.
Klokov, R.; Lempitsky, V. Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models. In Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; IEEE: New York, 2017; pp. 863–872. doi: 10.1109/ICCV.2017.99
- 35.
Armeni, I.; Sax, S.; Zamir, A.R.; et al. Joint 2D-3D-semantic data for indoor scene understanding. arXiv: 1702.01105, 2017. doi: 10.48550/arXiv.1702.01105
- 36.
Behley, J.; Garbade, M.; Milioto, A.; et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences. In Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 27 October 2019 - 02 November 2019; IEEE: New York, 2019; pp. 9296–9306. doi: 10.1109/ICCV.2019.00939
- 37.
Shen, Y.; Feng, C.; Yang, Y.Q.; et al. Mining point cloud local structures by kernel correlation and graph pooling. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, 2018; pp. 4548–4557. doi: 10.1109/CVPR.2018.00478
- 38.
Tchapmi, L.; Choy, C.; Armeni, I.; et al. SEGCloud: Semantic segmentation of 3D point clouds. In Proceedings of 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; IEEE: New York, 2017; pp. 537–547. doi: 10.1109/3DV.2017.00067
- 39.
Zhang, C.; Luo, W.J.; Urtasun, R. Efficient convolutions for real-time semantic segmentation of 3D point clouds. In Proceedings of 2018 International Conference on 3D Vision (3DV), Verona, Italy, 05–08 September 2018; IEEE: New York, 2018; pp. 399–408. doi: 10.1109/3DV.2018.00053
- 40.
Zhao, H.S.; Jiang, L.; Fu, C.W.; et al. PointWeb: Enhancing local neighborhood features for point cloud processing. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; 2019; pp. 5560–5568. doi: 10.1109/CVPR.2019.00571
- 41.
Lin, Y.Q.; Yan, Z.Z.; Huang, H.B.; et al. FPConv: Learning local flattening for point convolution. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 4292–4301. doi: 10.1109/CVPR42600.2020.00435
- 42.
Kochanov, D.; Nejadasl, F.K.; Booij, O. KPRNet: Improving projection-based LiDAR semantic segmentation. arXiv: 2007.12668, 2020. doi: 10.48550/arXiv.2007.12668