2504000038
  • Open Access
  • Article
Adaptive Fixed-time Control for Multiple Switched Coupled Neural Networks
  • Linhao Zhao,   
  • Boqian Li *

Received: 15 Jul 2024 | Accepted: 24 Aug 2024 | Published: 26 Sep 2024

Abstract

Adaptive control is an effective approach for mitigating undesirable deviations in prescribed closed-loop plant behavior. However, conventional adaptive control methods often exhibit slow responses in various control tasks. This paper introduces a novel adaptive control method to achieve fixed-time synchronization in a class of coupled neural networks. We present coupled neural networks with multiple switching topologies and design a fixed-time adaptive control strategy for this system. Furthermore, we establish a criterion to ensure the fixed-time stability of the closed-loop system. Two numerical examples are provided to demonstrate the effectiveness and accuracy of the theoretical results.

References 

  • 1.
    Zhou, J.; Chen, T.P.; Xiang, L. Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process, 2005, 24: 599−613. doi: 10.1007/s00034-005-2410-y
  • 2.
    Ouyang, D.Q.; Shao, J.; Jiang, H.J.; et al. Impulsive synchronization of coupled delayed neural networks with actuator saturation and its application to image encryption. Neural Netw, 2020, 128: 158−171. doi: 10.1016/J.NEUNET.2020.05.016
  • 3.
    Qiu, H.L.; Cao, J.D.; Liu, H. Passivity of fractional-order coupled neural networks with interval uncertainties. Math. Comput. Simul, 2023, 205: 845−860. doi: 10.1016/J.MATCOM.2022.10.029
  • 4.
    Long, H.; Ci, J.X.; Guo, Z.Y.; et al. Synchronization of coupled switched neural networks subject to hybrid stochastic disturbances. Neural Netw, 2023, 166: 459−470. doi: 10.1016/J.NEUNET.2023.07.045
  • 5.
    Tang, Z.; Jiang, C.H.; Wang, Y.; et al. Average impulsive weight based event-triggered impulsive synchronization on coupled neural networks. IEEE Trans. Netw. Sci. Eng, 2023, 10: 2180−2189. doi: 10.1109/TNSE.2023.3243248
  • 6.
    Wang, J.L.; Zhang, X.X.; Wen, G.G.; et al. Passivity and finite-time passivity for multi-weighted fractional-order complex networks with fixed and adaptive couplings. IEEE Trans. Neural Netw. Learn. Syst, 2023, 34: 894−908. doi: 10.1109/TNNLS.2021.3103809
  • 7.
    Zhao, L.H.; Wen, S.P.; Xu, M.; et al. PID control for output synchronization of multiple output coupled complex networks. IEEE Trans. Netw. Sci. Eng, 2022, 9: 1553−1566. doi: 10.1109/TNSE.2022.3147786
  • 8.
    Zhao, L.H.; Wen, S.P.; Li, C.J.; et al. A recent survey on control for synchronization and passivity of complex networks. IEEE Trans. Netw. Sci. Eng., 2022, 9: 4235−4254. doi: 10.1109/TNSE.2022.3196786
  • 9.
    Wang, J.L.; Zhao, L.H. PD and PI control for passivity and synchronization of coupled neural networks with multi-weights. IEEE Trans. Netw. Sci. Eng., 2021, 8: 790−802. doi: 10.1109/TNSE.2021.3052889
  • 10.
    Wu, X.Q.; Wu, X.Q.; Wang, C.Y.; et al. Synchronization in multiplex networks. Phys. Rep., 2024, 1060: 1−54. doi: 10.1016/j.physrep.2024.01.005
  • 11.
    Cao, Y.T.; Zhao, L.H.; Zhong, Q.S.; et al. Adaptive PI control for H∞ synchronization of multiple delayed coupled neural networks. Neurocomputing, 2023, 560: 126855. doi: 10.1016/J.NEUCOM.2023.126855
  • 12.
    Liu, X.L.; Wang, J.L.; Huang, T.W. Output synchronization for coupled neural networks with multiple delayed output couplings. IEEE Trans. Circuits Syst. II Express Briefs, 2022, 69: 4394−4398. doi: 10.1109/TCSII.2022.3182702
  • 13.
    Wang, L.; Bian, Y.G.; Guo, Z.Y.; et al. Lag H ∞ synchronization in coupled reaction-diffusion neural networks with multiple state or derivative couplings. Neural Netw., 2022, 156: 179−192. doi: 10.1016/J.NEUNET.2022.09.030
  • 14.
    Galicki, M. Finite-time control of robotic manipulators. Automatica, 2015, 51: 49−54. doi: 10.1016/J.AUTOMATICA.2014.10.089
  • 15.
    Wang, L.; Bian, Y.G.; Cao, D.P.; et al. Hierarchical safe control of heterogeneous connected vehicle systems using adaptive fault-tolerant control. IEEE Trans. Veh. Technol. 2024 , in press. doi: 10.1109/TVT.2024.3400971
  • 16.
    Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim., 2000, 38: 751−766. doi: 10.1137/S0363012997321358
  • 17.
    Rao, H.X.; Guo, Y.R.; Xu, Y.; et al. Nonfragile finite-time synchronization for coupled neural networks with impulsive approach. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31: 4980−4989. doi: 10.1109/TNNLS.2020.3001196
  • 18.
    Tang, R.Q.; Su, H.S.; Zou, Y.; et al. Finite-time synchronization of Markovian coupled neural networks with delays via intermittent quantized control: Linear programming approach. IEEE Trans. Neural Netw. Learn. Syst., 2022, 33: 5268−5278. doi: 10.1109/TNNLS.2021.3069926
  • 19.
    Xu, Y.H.; Gao, Q.W.; Xie, C.R.; et al. Finite-time synchronization of complex networks with privacy-preserving. IEEE Trans. Circuits Syst. II Express Briefs, 2023, 70: 4103−4107. doi: 10.1109/TCSII.2023.3274634
  • 20.
    Tian, E.G.; Zou, Y.; Chen, H.T. Finite-time synchronization of complex networks with intermittent couplings and neutral-type delays. IEEE/CAA J. Autom. Sin., 2023, 10: 2026−2028. doi: 10.1109/JAS.2023.123171
  • 21.
    Qiu, S.H.; Huang, Y.L.; Ren, S.Y. Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay. Neurocomputing, 2018, 275: 1250−1260. doi: 10.1016/J.NEUCOM.2017.09.073
  • 22.
    Xu, Y.; Li, Y.Z.; Li, W.X. Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights. Commun. Nonlinear Sci. Numer. Simul., 2020, 85: 105239. doi: 10.1016/J.CNSNS.2020.105239
  • 23.
    Zhao, L.H.; Wen, S.P.; Guo, Z.Y.; et al. Finite-time nonchattering synchronization of coupled neural networks with multi-weights. IEEE Trans. Netw. Sci. Eng., 2023, 10: 2212−2225. doi: 10.1109/TNSE.2023.3243610
  • 24.
    Wang, J.L.; Wu, H.Y.; Huang, T.W.; et al. Finite-time synchronization and H ∞ synchronization for coupled neural networks with multistate or multiderivative couplings. IEEE Trans. Neural Netw. Learn. Syst., 2024, 35: 1628−1638. doi: 10.1109/TNNLS.2022.3184487
  • 25.
    Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control, 2012, 57: 2106−2110. doi: 10.1109/TAC.2011.2179869
  • 26.
    Chen, X.Y.; Jia, T.Y.; Wang, Z.S.; et al. Practical fixed-time bipartite synchronization of uncertain coupled neural networks subject to deception attacks via dual-channel event-triggered control. IEEE Trans. Cybern, 2024, 54: 3615−3625. doi: 10.1109/TCYB.2023.3338165
  • 27.
    Gong, S.Q.; Guo, Z.Y.; Wen, S.P.; et al. Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay. IEEE Trans. Cybern, 2021, 51: 2944−2955. doi: 10.1109/TCYB.2019.2953236
  • 28.
    Guo, Z.Y.; Xie, H.; Wang, J. Finite-time and fixed-time synchronization of coupled switched neural networks subject to stochastic disturbances. IEEE Trans. Syst. Man Cybern. Syst, 2022, 52: 6511−6523. doi: 10.1109/TSMC.2022.3146892
  • 29.
    Cao, Y.T.; Zhao, L.H.; Zhong, Q.S.; et al. Adaptive fixed-time output synchronization for complex dynamical networks with multi-weights. Neural Netw, 2023, 163: 28−39. doi: 10.1016/J.NEUNET.2023.03.032
  • 30.
    Liu, X.Y.; Shao, S.; Hu, Y.F.; et al. Fixed-time synchronization of multi-weighted complex networks via economical controllers. Neural Process. Lett, 2022, 54: 5023−5041. doi: 10.1007/S11063-022-10846-1
  • 31.
    Shi, J.Y.; Zhou, P.P.; Cai, S.M.; et al. On finite-/fixed-time synchronization of multi-weighted dynamical networks: A new unified control approach. Neural Comput. Appl, 2023, 35: 5769−5790. doi: 10.1007/S00521-022-07979-8
  • 32.
    Wen, G.H.; Yu, X.H.; Yu, W.W.; et al. Coordination and control of complex network systems with switching topologies: A survey. IEEE Trans. Syst. Man Cybern. Syst, 2021, 51: 6342−6357. doi: 10.1109/TSMC.2019.2961753
  • 33.
    Hu, T.T.; Park, J.H.; Liu, X.Z.; et al. Sampled-data-based event-triggered synchronization strategy for fractional and impulsive complex networks with switching topologies and time-varying delay. IEEE Trans. Syst. Man Cybern. Syst, 2022, 52: 3568−3580. doi: 10.1109/TSMC.2021.3071811
  • 34.
    Yang, Q.J.; Wu, H.Q.; Cao, J.D. Pinning exponential cluster synchronization for fractional-order complex dynamical networks with switching topology and mode-dependent impulses. Neurocomputing, 2021, 428: 182−194. doi: 10.1016/J.NEUCOM.2020.11.031
  • 35.
    Chen, Y.G.; Wang, Z.D.; Hu, J.; et al. Synchronization control for discrete-time-delayed dynamical networks with switching topology under actuator saturations. IEEE Trans. Neural Netw. Learn. Syst, 2021, 32: 2040−2053. doi: 10.1109/TNNLS.2020.2996094
  • 36.
    Yang, X.S.; Li, X.D.; Lu, J.Q.; et al. Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans. Cybern, 2020, 50: 4043−4052. doi: 10.1109/TCYB.2019.2938217
  • 37.
    Wang, S.B.; Cao, Y.T.; Guo, Z.Y.; et al. Periodic event-triggered synchronization of multiple memristive neural networks with switching topologies and parameter mismatch. IEEE Trans. Cybern, 2021, 51: 427−437. doi: 10.1109/TCYB.2020.2983481
  • 38.
    Wang, J.L.; Wang, L.; Wu, H.N. Synchronization for complex networks with multiple state or delayed state couplings under recoverable attacks. IEEE Trans. Syst. Man Cybern. Syst, 2023, 53: 38−48. doi: 10.1109/TSMC.2022.3164792
  • 39.
    Cao, Y.T.; Zhao, L.H.; Zhong, Q.S.; et al. Synchronization of coupled neural networks with multiple switching topologies via adaptive control techniques. Int. J. Robust Nonlinear Control, 2024, 34: 8661−8675. doi: 10.1002/rnc.7409
  • 40.
    Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, 1952.
  • 41.
    Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, 1991.
  • 42.
    Zhao, L.H.; Wen, S.P.; Zhu, S.; et al. Robust H ∞ pinning synchronization for multiweighted coupled reaction-diffusion neural networks. IEEE Trans. Cybern, 2023, 53: 6549−6561. doi: 10.1109/TCYB.2022.3223713
Share this article:
How to Cite
Zhao, L.; Li, B. Adaptive Fixed-time Control for Multiple Switched Coupled Neural Networks. International Journal of Network Dynamics and Intelligence 2024, 3 (3), 100018. https://doi.org/10.53941/ijndi.2024.100018.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.