2504000041
  • Open Access
  • Article
Conditional Generative Adversarial Net based Feature Extraction along with Scalable Weakly Supervised Clustering for Facial Expression Classification
  • Ze Chen 1,   
  • Lu Zhang 2,   
  • Jiaming Tang 3,   
  • Jiafa Mao 3,   
  • Weiguo Sheng 1, *

Received: 28 Sep 2023 | Accepted: 30 Jun 2024 | Published: 24 Dec 2024

Abstract

Extracting proper features plays a pivotal role in facial expression recognition. In this paper, we propose to extract facial expression features via a conditional generative adversarial net, followed by an algorithmic optimization step. These refined features are subsequently integrated into a scalable weakly supervised clustering framework for facial expression classification. Our results show that the proposed method can achieve an average recognition rate of 85.3%, which significantly outperforms related methods. Further, by employing a residual-based scheme for feature extraction, our method shows superior adaptability compared to algorithms based solely on weakly supervised clustering. Additionally, our method does not require high accurate annotation data and is robust to the noise presented in data sets.

References 

  • 1.
    Chu, W.S.; De la Torre, F.; Cohn, J.F. Selective transfer machine for personalized facial action unit detection. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; IEEE: New York, 2013; pp. 3515–3572. doi: 10.1109/CVPR.2013.451
  • 2.
    Lucey, P.; Cohn, J.F.; Kanade, T.; et al. The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – Workshops, San Francisco, CA, USA, 1318 June 2010; IEEE: New York, 2010; pp. 94–101. doi: 10.1109/CVPRW.2010.5543262
  • 3.
    Valstar, M.F.; Almaev, T.; Girard, J.M.; et al. FERA 2015 - second facial expression recognition and analysis challenge. In 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 48 May 2015; IEEE: New York, 2015; pp. 1–8. doi: 10.1109/FG.2015.7284874
  • 4.
    McDuff, D.; El Kaliouby, R.; Senechal, T.; et al. Affectiva-MIT facial expression dataset (AM-FED): Naturalistic and spontaneous facial expressions collected “in-the-wild”. In 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 2328 June 2013; IEEE: New York, 2013; pp. 881–888. doi: 10.1109/CVPRW.2013.130
  • 5.
    Xia, Y.F.; Yu, H.; Wang, X.; et al. Relation-aware facial expression recognition. IEEE Trans. Cogn. Dev. Syst., 2022, 14: 1143−1154. doi: 10.1109/TCDS.2021.3100131
  • 6.
    Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv: 1411.1784, 2014.
  • 7.
    Nigam, S.; Singh, R.; Misra, A.K. Efficient facial expression recognition using a histogram of oriented gradients in wavelet domain. Multimed. Tools Appl., 2018, 77: 28725−28747. doi: 10.1007/s11042-018-6040-3
  • 8.
    Ge, H.L.; Zhu, Z.Y.; Dai, Y.W.; et al. Facial expression recognition based on deep learning. Comput. Methods Programs Biomed., 2022, 215: 106621. doi: 10.1016/j.cmpb.2022.106621
  • 9.
    Zhang, H.F.; Su, W.; Yu, J.; et al. Identity–expression dual branch network for facial expression recognition. IEEE Trans. Cogn. Dev. Syst., 2021, 13: 898−911. doi: 10.1109/TCDS.2020.3034807
  • 10.
    Sun, W.Y.; Zhao, H.T.; Jin, Z. A visual attention based ROI detection method for facial expression recognition. Neurocomputing, 2018, 296: 12−22. doi: 10.1016/j.neucom.2018.03.034
  • 11.
    Michael Revina, I.; Sam Emmanuel, W.R. Facial expression recognition via modified GAD features with PSO-KNN. In 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 1314 December 2018; IEEE: New York, 2018; pp. 145–149. doi: 10.1109/ICSSIT.2018.8748697
  • 12.
    Kim, Y.; Yoo, B.; Kwak, Y.; et al. Deep generative-contrastive networks for facial expression recognition. arXiv preprint arXiv: 1703.07140, 2017.
  • 13.
    Zafeiriou, S.; Petrou, M. Sparse representations for facial expressions recognition via l1 optimization. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – Workshops, San Francisco, CA, USA, 1318 June 2010; IEEE: New York, 2010; pp. 32–39. doi: 10.1109/CVPRW.2010.5543148
  • 14.
    Bazzo, J.J.; Lamar, M.V. Recognizing facial actions using Gabor wavelets with neutral face average difference. In Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea (South), 19 May 2004; IEEE: New York, 2004; pp. 505–510. doi: 10.1109/AFGR.2004.1301583
  • 15.
    Rawal, N.; Stock-Homburg, R.M. Facial emotion expressions in human-robot interaction: A survey. Int. J. Soc. Robot., 2022, 14: 1583−1604. doi: 10.1007/S12369-022-00867-0
  • 16.
    Zhang, X.; Zhang, F.F.; Xu, C.S. Joint expression synthesis and representation learning for facial expression recognition. IEEE Trans. Circuits Syst. Video Technol., 2022, 32: 1681−1695. doi: 10.1109/TCSVT.2021.3056098
  • 17.
    Yaermaimaiti, Y.; Kari, T.; Zhuang, G.H. Research on facial expression recognition based on an improved fusion algorithm. Nonlinear Eng., 2022, 11: 112−122. doi: 10.1515/nleng-2022-0015
  • 18.
    Bao, H.; Ma, T. Feature extraction and facial expression recognition based on Bezier curve. In 2014 IEEE International Conference on Computer and Information Technology, Xian, China, 1113 September 2014; IEEE: New York, 2014; pp. 884–887. doi: 10.1109/CIT.2014.140
  • 19.
    Ghahari, A.; Fatmehsari, Y.R.; Zoroofi, R.A. A novel clustering-based feature extraction method for an automatic facial expression analysis system. In Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, Japan, 1214 September 2009; IEEE: New York, 2019; pp. 1314–1317. doi: 10.1109/IIH-MSP.2009.38
  • 20.
    Yang, H.Y.; Ciftci, U.; Yin, L.J. Facial expression recognition by de-expression residue learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 1823 June 2018; IEEE: New York, 2018; pp. 2168–2177. doi: 10.1109/CVPR.2018.00231
  • 21.
    Bilen, H.; Pedersoli, M.; Tuytelaars, T. Weakly supervised object detection with convex clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 712 June 2015; IEEE: New York, 2015; pp. 1081–1089. doi: 10.1109/CVPR.2015.7298711
  • 22.
    Prest, A.; Schmid, C.; Ferrari, V. Weakly supervised learning of interactions between humans and objects. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34: 601−614. doi: 10.1109/TPAMI.2011.158
  • 23.
    Bo, Y.; Fan, J.J.; Zhuang, J. Visual analysis of facial expression recognition research based on knowledge graph. In Proceedings of the 4th International Conference on Machine Learning for Cyber Security, Guangzhou, China, 2–4 December 2022; Springer: Berlin/Heidelberg, 2022; pp. 350–357. doi: 10.1007/978-3-031-20102-8_27
  • 24.
    Luo, Y.; Wu, J.X.; Zhang, Z.H.; et al. Design of facial expression recognition algorithm based on CNN model. In Proceedings of the 3rd IEEE International Conference on Power, Electronics and Computer Applications, Shenyang, China, 29–31 January 2023; IEEE: New York, 2023; pp. 580–583. doi: 10.1109/ICPECA56706.2023.10075779
  • 25.
    Shiomi, T.; Nomiya, H.; Hochin, T. Facial expression intensity estimation considering change characteristic of facial feature values for each facial expression. In Proceedings of the 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Kyoto City, Japan, 4–7 July 2022; IEEE: New York, 2022; pp. 15–21. doi: 10.1109/SNPD-Summer57817.2022.00012
  • 26.
    Jin, X.F.; Liu, J.Y.; Yue, D. The research and improvement of facial expression recognition algorithm based on convolutional neural network. In Proceedings of the 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Taiyuan, China, 5–7 July 2023; IEEE: New York, 2023; pp. 166–170. doi: 10.1109/SNPD-Winter57765.2023.10224044
  • 27.
    Wang, L.; Li, R.F.; Wang, K. A novel automatic facial expression recognition method based on AAM. J. Comput., 2014, 9: 608−617.
  • 28.
    Zhao, K.L.; Chu, W.S.; Martinez, A.M. Learning facial action units from web images with scalable weakly supervised clustering. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, 2018; pp. 2090–2099. doi: 10.1109/CVPR.2018.00223
  • 29.
    Zhu, C.H.; Wen, F.; Sun, J. A rank-order distance based clustering algorithm for face tagging. In CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; IEEE: New York, 2011; pp. 481–488. doi: 10.1109/CVPR.2011.5995680
  • 30.
    Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103: 8577−8582. doi: 10.1073/pnas.0601602103
  • 31.
    Lyons, M.; Akamatsu, S.; Kamachi, M.; et al. Coding facial expressions with Gabor wavelets. In Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 14–16 April 1998; IEEE: New York, 1998; pp. 200–205. doi: 10.1109/AFGR.1998.670949
  • 32.
    Zhao, G.Y.; Huang, X.H.; Taini, M.; et al. Facial expression recognition from near-infrared videos. Image Vision Comput., 2011, 29: 607−619. doi: 10.1016/j.imavis.2011.07.002
  • 33.
    Melacci, S.; Belkin, M. Laplacian support vector machines trained in the primal. J. Mach. Learn. Res., 2011, 12: 1149−1184.
  • 34.
    Joachims, T. Transductive inference for text classification using support vector machines. In Proceedings of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 27–30 June 1999; Morgan Kaufmann Publishers Inc.: San Francisco, 1999; pp. 200–209.
  • 35.
    Guo, Y.M.; Zhao, G.Y.; Pietikäinen, M. Dynamic facial expression recognition using longitudinal facial expression atlases. In 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, 2012; pp. 631–644. doi: 10.1007/978-3-642-33709-3_45
  • 36.
    Zhao, G.Y.; Pietikainen, M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29: 915−928. doi: 10.1109/TPAMI.2007.1110
  • 37.
    Liu, M.Y.; Shan, S.G; Wang, R.P.; et al. Learning expressionlets on spatio-temporal manifold for dynamic facial expression recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: New York, 2014; pp. 1749–1756. doi: 10.1109/CVPR.2014.226
  • 38.
    Zhao, X.Y.; Liang, X.D.; Liu, L.Q.; et al. Peak-piloted deep network for facial expression recognition. In 14th European Conference on Computer Vision, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, 2016; pp. 425–442. doi: 10.1007/978-3-319-46475-6_27
  • 39.
    Liu, S.G.; Li, L.J.; Peng, Y.L.; et al. Improved sparse representation method for image classification. IET Comput. Vision, 2017, 11: 319−330. doi: 10.1049/iet-cvi.2016.0186
  • 40.
    Liliana, D.Y.; Basaruddin, T. The fuzzy emotion recognition framework using semantic-linguistic facial features. In 2019 IEEE R10 Humanitarian Technology Conference, Depok, West Java, Indonesia, 1214 November 2019; IEEE: New York, 2019; pp. 263–268. doi: 10.1109/R10-HTC47129.2019.9042442
Share this article:
How to Cite
Chen, Z.; Zhang, L.; Tang, J.; Mao, J.; Sheng, W. Conditional Generative Adversarial Net based Feature Extraction along with Scalable Weakly Supervised Clustering for Facial Expression Classification. International Journal of Network Dynamics and Intelligence 2024, 3 (4), 100024. https://doi.org/10.53941/ijndi.2024.100024.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.