- 1.
Tan, M.X.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, 9–15 June 2019; ICML: Honolulu, 2019; pp. 6105–6114.
- 2.
Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, 2017; pp. 3645–3649. doi:10.1109/ICIP.2017.8296962
- 3.
He, K.M.; Zhang, X.Y.; Ren, S.Q.; et al. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 27–30 June 2016; IEEE: New York, 2016; pp. 770–778. doi:10.1109/CVPR.2016.90
- 4.
Li, Y.S.; Ma, R.G.; Zhang, M.Y. Traffic monitoring video vehicle volume statistics method based on improved YOLOv5s+DeepSORT. Comput. Eng. Appl., 2022, 58: 271−279.
- 5.
Jin, L.S.; Hua, Q.; Guo, B.C.; et al. Multi-target tracking of vehicles based on optimized DeepSort. J. Zhejiang Univ. (Eng. Ed.) 2021, 55, 1056–1064. doi:10.3785/j.issn.1008.973X.2021.06.005
- 6.
Jia, Z.; Li, M.J.; Li, W.T. Real-time vehicle detection at intersections based on improved YOLOv5+DeepSort algorithm model. Comput. Eng. Sci., 2023, 45: 674−682.
- 7.
Kumar, S.; Jailia, M.; Varshney, S.; et al. Robust vehicle detection based on improved you look only once. Comput., Mater. Continua, 2022, 74: 3561−3577.
- 8.
Zhang, W.L.; Nan, X.Y. Road vehicle tracking algorithm based on improved YOLOv5. J. Guangxi Norm. Univ. (Nat. Sci. Ed.) 2022, 40, 49–57. doi:10.16088/j.issn.1001-6600.2021081303
- 9.
Gai, Y.Q.; He, W.Y.; Zhou, Z.L. Pedestrian target tracking based on DeepSORT with YOLOv5. In 2021 2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC), Chongqing, China, 12–14 November 2021; IEEE: New York, 2021; pp. 1–5. doi:10.1109/ICCEIC54227.2021.00008
- 10.
Zhou, X. A deep learning-based method for automatic multi-objective vehicle trajectory acquisition. Trans. Sci. Technol. 2021, 135–140, 144.
- 11.
Zhang, Q. Multi-object trajectory extraction based on YOLOv3-DeepSort for pedestrian-vehicle interaction behavior analysis at non-signalized intersections. Multimedia Tools Appl., 2023, 82: 15223−15245.
- 12.
Chen, X.W.; Jia, Y.P.; Tong, X.Q; et al. Research on pedestrian detection and DeepSort tracking in front of intelligent vehicle based on deep learning. Sustainability, 2022, 14: 9281.
- 13.
Zhan, W.; Sun, C.F.; Wang, M.C.; et al. An improved yolov5 real-time detection method for small objects captured by UAV. Soft Comput., 2022, 26: 361−373.
- 14.
Ye, L.L.; Li, W.D.; Zheng, L.X.; et al. Multiple object tracking algorithm based on detection and feature matching. J. Huaqiao Univ. (Nat. Sci.) 2021, 42, 661–669. doi:10.11830/ISSN.1000-5013.202105018
- 15.
Wang, S.; Wang, Q.; Min, W.D.; et al. Trade-off background joint learning for unsupervised vehicle re-identification. Visual Comput., 2023, 39: 3823−3835.
- 16.
Wang, N.T.; Wang, S.Q.; Tang, L.; et al. Insulator defect detection based on EfficientNet-YOLOv5s network. J. Hubei Univ. Technol., 2023, 38: 21−26.
- 17.
Zhang, K.J.; Wang, C.; Yu, X.Y.; et al. Research on mine vehicle tracking and detection technology based on YOLOv5. Syst. Sci. Control Eng., 2022, 10: 347−366.
- 18.
Zhang, X.; Hao, X.Y.; Liu, S.L.; et al. Multi-target tracking of surveillance video with differential YOLO and DeepSort. In Proceedings of the SPIE 11179, Eleventh International Conference on Digital Image Processing, Guangzhou, China, 14 August 2019; SPIE: San Francisco, 2019; pp. 701–710. doi:10.1117/12.2540269
- 19.
Li, M.A.; Zhu, H.J.; Chen, H.; et al. Research on object detection algorithm based on deep learning. In Proceedings of 2021 3rd International Conference on Computer Modeling, Simulation and Algorithm, Shanghai, China, 4–5 July 2021; IOP, 2021; p. 012046. doi:10.1088/1742-6596/1995/1/012046
- 20.
Wen, N.; Guo, R.Z.; He, B. Multi-lane vehicle counting based on DCN-Mobile-YOLO model. J. Shenzhen Univ. (Sci. Eng.) 2021, 38, 628–635. doi:10.3724/SP.J.1249.2021.06628
- 21.
Dai, J.H.; Guo, J.S. Video-based vehicle flow detection and counting for multi-lane roads. Foreign Electron. Meas. Technol., 2016, 35: 30−33.