Author Information
Abstract
The disassembly complexity of end-of-life products increases continuously. Traditional methods are facing difficulties in solving the decision-making and control problems of disassembly operations. On the other hand, the latest development in reinforcement learning makes it more feasible to solve such kind of complex problems. Inspired by behaviorism psychology, reinforcement learning is considered as one of the most promising directions to achieve universal artificial intelligence (AI). In this context, we first review the basic ideas, mathematical models, and various algorithms of reinforcement learning. Then, we introduce the research progress and application subjects in the field of disassembly and recycling, such as disassembly sequencing, disassembly line balancing, product transportation, disassembly layout, etc. In addition, the prospects, challenges and applications of reinforcement learning based disassembly and recycling are also comprehensively analyzed and discussed.
Graphical Abstract

Keywords
References

This work is licensed under a This work is licensed under a Creative Commons Attribution 4.0 International License.