2504000045
  • Open Access
  • Article
Fault-tolerant formation consensus control for time-varying multi-agent systems with stochastic communication protocol
  • Chunyu Li,   
  • Yifan Liu,   
  • Ming Gao,   
  • Li Sheng *

Received: 04 Sep 2023 | Accepted: 08 Nov 2023 | Published: 26 Mar 2024

Abstract

This paper is concerned with the problem of fault-tolerant formation consensus control for linear time-varying (LTV) multi-agent systems (MASs) with stochastic communication protocol (SCP). The SCP is introduced to schedule the signal transmission, and only one neighbouring agent is allowed to transmit data at one instant. The purpose of this work is to design a fault-tolerant controller for each agent, so that, for all probabilistic scheduling behaviors, MASs can achieve the formation consensus performance. The state and fault are augmented into a new vector, meanwhile, each agent system is written as a singular one and a state observer is designed. By utilizing the estimated information of states and faults, the designed time-varying compensation term can reduce the impacts of unknown external disturbances and faults. Then, a sufficient condition is obtained to guarantee the performance constraint over the finite horizon for closed-loop systems. The parameters of observers and controllers are derived by solving coupled backward recursive Riccati difference equations. Finally, a numerical example is given to validate the effectiveness of the proposed fault-tolerant control scheme.

References 

  • 1.
    Cheng, P.D.C.; Indri, M.; Possieri, C.; et al. Path planning in formation and collision avoidance for multi-agent systems. Nonlinear Anal. Hybrid Syst., 2023, 47: 101293. doi: 10.1016/j.nahs.2022.101293
  • 2.
    Xu, B.W.; Zhang, H.T.; Ding, Y.; et al. Event-triggered surrounding formation control of multiagent systems for multiple dynamic targets. IEEE Trans. Control Netw. Syst., 2023, 10: 752−764. doi: 10.1109/TCNS.2022.3210291
  • 3.
    Su, Y.F.; Cai, H.; Huang, J. The cooperative output regulation by the distributed observer approach. Int. J. Netw. Dyn. Intell., 2022, 1: 20−35. doi: 10.53941/ijndi0101003
  • 4.
    Yan, B.; Shi, P.; Lim, C.C.; et al. Robust formation control for multiagent systems based on adaptive observers. IEEE Syst. J., 2022, 16: 3139−3150. doi: 10.1109/JSYST.2021.3127579
  • 5.
    Wu, J.F.; Wang, H.L.; Li, N.; et al. Formation obstacle avoidance: A fluid-based solution. IEEE Syst. J., 2020, 14: 1479−1490. doi: 10.1109/JSYST.2019.2917786
  • 6.
    Liu, M.C.; Li, Y.D.; Zhu, L.; et al. Formation control for mixed-order UAVs-USVs-UUVs systems under cooperative and optimal control. J. Mar. Sci. Eng., 2023, 11: 704. doi: 10.3390/jmse11040704
  • 7.
    Shi, P.; Yan, B. A survey on intelligent control for multiagent systems. IEEE Trans. Syst., Man, Cybern.: Syst., 2021, 51: 161−175. doi: 10.1109/TSMC.2020.3042823
  • 8.
    Ma, L.F.; Wang, Z.D.; Chen, Y.; et al. Probability-guaranteed distributed filtering for nonlinear systems with innovation constraints over sensor networks. IEEE Trans. Control Netw. Syst., 2021, 8: 951−963. doi: 10.1109/TCNS.2021.3049361
  • 9.
    Niu, Y.C.; Sheng, L.; Gao, M.; Zhou, D.H. Distributed intermittent fault detection for linear stochastic systems over sensor network. IEEE Trans. Cybern., 2022, 52: 9208−9218. doi: 10.1109/TCYB.2021.3054123
  • 10.
    Luo, Y.Q.; Wang, Z.D.; Hu, J.; et al. Security-guaranteed fuzzy networked state estimation for 2-D systems with multiple sensor arrays subject to deception attacks. IEEE Trans. Fuzzy Syst., 2023, 31: 3624−3638. doi: 10.1109/TFUZZ.2023.3262609
  • 11.
    Sheng, L.; Zhang, S.; Gao, M. Intermittent fault detection for linear discrete-time stochastic multi-agent systems. Appl. Math. Comput., 2021, 410: 126480. doi: 10.1016/j.amc.2021.126480
  • 12.
    Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; et al. Real-time sensing and fault diagnosis for transmission lines. Int. J. Netw. Dyn. Intell., 2022, 1: 36−47. doi: 10.53941/ijndi0101004
  • 13.
    Amin, A.A.; Hasan, K.M. A review of fault tolerant control systems: Advancements and applications. Measurement, 2019, 143: 58−68. doi: 10.1016/j.measurement.2019.04.083
  • 14.
    Sheng, L.; Niu, Y.C.; Gao, M.; et al. Particle filter-based fault detection for Toolface measurement of rotary steerable systems. IEEE Trans. Instrum. Meas., 2023, 72: 3519511. doi: 10.1109/TIM.2023.3284049
  • 15.
    Hu, Q.; Xiao, B.; Friswell, M.I. Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation. IET Control Theory Appl., 2011, 5: 271−282. doi: 10.1049/iet-cta.2009.0628
  • 16.
    Wang, Q.; Dong, X.W.; Wang, B.H.; et al. Finite-time observer-based H∞ fault-tolerant output formation tracking control for heterogeneous nonlinear multi-agent systems. IEEE Trans. Netw. Sci. Eng., 2023, 10: 1822−1834. doi: 10.1109/TNSE.2023.3235527
  • 17.
    Nair, R.R.; Karki, H.; Shukla, A.; et al. Fault-tolerant formation control of nonholonomic robots using fast adaptive gain nonsingular terminal sliding mode control. IEEE Syst. J., 2019, 13: 1006−1017. doi: 10.1109/JSYST.2018.2794418
  • 18.
    Deng, C.; Che, W.W. Fault-tolerant fuzzy formation control for a class of nonlinear multiagent systems under directed and switching topology. IEEE Trans. Syst., Man, Cybern.: Syst., 2021, 51: 5456−5465. doi: 10.1109/TSMC.2019.2954870
  • 19.
    Liu, C.; Jiang, B.; Zhang, K. Adaptive fault-tolerant H-infinity output feedback control for Lead-Wing close formation flight. IEEE Trans. Syst., Man, Cybern.: Syst., 2020, 50: 2804−2814. doi: 10.1109/TSMC.2018.2830511
  • 20.
    Liu, C.; Jiang, B.; Patton, R.J.; et al. Integrated fault-tolerant control for close formation flight. IEEE Trans. Aerosp. Electron. Syst., 2020, 56: 839−852. doi: 10.1109/TAES.2019.2920221
  • 21.
    Ji, W.Y.; Pan, Y.N.; Zhao, M. Adaptive fault-tolerant optimized formation control for perturbed nonlinear multiagent systems. Int. J. Robust Nonlinear Control, 2022, 32: 3386−3407. doi: 10.1002/rnc.5961
  • 22.
    Yu, Z.Q.; Zhang, Y.M.; Jiang, B.; et al. Distributed fractional-order intelligent adaptive fault-tolerant formation-containment control of two-layer networked unmanned airships for safe observation of a smart city. IEEE Trans. Cybern., 2022, 52: 9132−9144. doi: 10.1109/TCYB.2021.3052875
  • 23.
    Liu, D.Y.; Liu, H.; Lewis, F.L.; et al. Robust fault-tolerant formation control for tail-sitters in aggressive flight mode transitions. IEEE Trans. Ind. Inf., 2020, 16: 299−308. doi: 10.1109/TII.2019.2914478
  • 24.
    Wang, H.Q.; Dong, J.X. Time-varying formation control for multi-agent systems under directed topology base on gain re-adaptation fault-tolerant compensation approach. Int. J. Robust Nonlinear Control, 2022, 32: 3909−3922. doi: 10.1002/rnc.6007
  • 25.
    Liu, Y.S.; Dong, X.W.; Shi, P.F.; et al. Distributed fault-tolerant formation tracking control for multiagent systems with multiple leaders and constrained actuators. IEEE Trans. Cybern., 2023, 53: 3738−3747. doi: 10.1109/TCYB.2022.3141734
  • 26.
    Ren, Y.; Zhang, K.; Jiang, B.; et al. Distributed fault-tolerant time-varying formation control of heterogeneous multi-agent systems. Int. J. Robust Nonlinear Control, 2022, 32: 2864−2882. doi: 10.1002/rnc.5870
  • 27.
    Jiang, J.H.; Jiang, Y.Y. Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies. Automatica, 2020, 113: 108804. doi: 10.1016/j.automatica.2020.108804
  • 28.
    Li, H.Y.; Li, X. Distributed model predictive consensus of heterogeneous time-varying multi-agent systems: With and without self-triggered mechanism. IEEE Trans. Circuits Syst. I:Regul. Pap., 2020, 67: 5358−5368. doi: 10.1109/TCSI.2020.3008528
  • 29.
    Li, H.Y.; Li, X. Distributed consensus of heterogeneous linear time-varying systems on UAVS-USVs coordination. IEEE Trans. Circuits Syst. II:Express Briefs, 2020, 67: 1264−1268. doi: 10.1109/TCSII.2019.2928870
  • 30.
    Chen, Y.Z.; Huang, X.L.; Zhan, J.Y. Gain-scheduled robust control for multi-agent linear parameter-varying systems with communication delays. Int. J. Robust Nonlinear Control, 2022, 32: 792−806. doi: 10.1002/rnc.5854
  • 31.
    Cai, Y.L.; Zhang, H.G.; Zhang, K.; et al. Distributed leader-following consensus of heterogeneous second-order time-varying nonlinear multi-agent systems under directed switching topology. Neurocomputing, 2019, 325: 31−47. doi: 10.1016/j.neucom.2018.09.068
  • 32.
    Chen, J.X.; Li, J.M.; Yang, N.N. Globally repetitive learning consensus control of unknown nonlinear multi-agent systems with uncertain time-varying parameters. Appl. Math. Modell., 2021, 89: 348−362. doi: 10.1016/j.apm.2020.07.063
  • 33.
    Zeng, Z.X.; Peng, S.G.; Feng, W.D. Quasi-consensus of time-varying multi-agent systems with external inputs under deception attacks. Entropy, 2022, 24: 447. doi: 10.3390/e24040447
  • 34.
    Chen, J.X.; Yu, Z.H.; Liu, S.Y.; et al. Fully distributed neural control of periodically time-varying parameterized stochastic nonlinear multi-agent systems with hybrid-order dynamics. Appl. Math. Comput., 2022, 426: 127117. doi: 10.1016/j.amc.2022.127117
  • 35.
    Liu, J.H.; Wang, C.L.; Xu, Y.J. Distributed adaptive output consensus tracking for high-order nonlinear time-varying multi-agent systems with output constraints and actuator faults. J. Franklin Inst., 2020, 357: 1090−1117. doi: 10.1016/j.jfranklin.2019.12.015
  • 36.
    Liu, L.; Sun, H.; Ma, L.F.; et al. Quasi-consensus control for a class of time-varying stochastic nonlinear time-delay multiagent systems subject to deception attacks. IEEE Trans. Syst., Man, Cybern.: Syst., 2021, 51: 6863−6873. doi: 10.1109/TSMC.2020.2964826
  • 37.
    Geng, H.; Wang, Z.D.; Chen, Y.; et al. Variance-constrained filtering fusion for nonlinear cyber-physical systems with the denial-of-service attacks and stochastic communication protocol. IEEE/CAA J. Autom. Sin., 2022, 9: 978−989. doi: 10.1109/JAS.2022.105623
  • 38.
    Zou, L.; Wang, Z.D.; Hu, J.; et al. Communication-protocol-based analysis and synthesis of networked systems: Progress, prospects and challenges. Int. J. Syst. Sci., 2021, 52: 3013−3034. doi: 10.1080/00207721.2021.1917721
  • 39.
    Zhao, Z.Y.; Wang, Z.D.; Zou, L.; et al. Zonotopic multi-sensor fusion estimation with mixed delays under try-once-discard protocol: A set-membership framework. Inf. Fusion, 2023, 91: 681−693. doi: 10.1016/j.inffus.2022.11.012
  • 40.
    Luo, Y.Q.; Wang, Z.D.; Chen, Y.; et al. H∞ state estimation for coupled stochastic complex networks with periodical communication protocol and intermittent nonlinearity switching. IEEE Trans. Netw. Sci. Eng., 2021, 8: 1414−1425. doi: 10.1109/TNSE.2021.3058220
  • 41.
    Luo, Y.Q.; Wang, Z.D.; Sheng, W.G.; et al. State estimation for discrete time-delayed impulsive neural networks under communication constraints: A delay-range-dependent approach. IEEE Trans. Neural Netw. Learn. Syst., 2023, 34: 1489−1501. doi: 10.1109/TNNLS.2021.3105449
  • 42.
    Wang, X.L.; Sun, Y.; Ding, D.R. Adaptive dynamic programming for networked control systems under communication constraints: A survey of trends and techniques. Int. J. Netw. Dyn. Intell., 2022, 1: 85−98. doi: 10.53941/ijndi0101008
  • 43.
    Tabbara, M.; Nesic, D. Input-output stability of networked control systems with stochastic protocols and channels. IEEE Trans. Autom. Control, 2008, 53: 1160−1175. doi: 10.1109/TAC.2008.923691
  • 44.
    Zhu, K.Q.; Hu, J.; Liu, Y.R.; et al. On ℓ2-ℓ∞ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems. Int. J. Syst. Sci., 2021, 52: 2961−2976. doi: 10.1080/00207721.2021.1914768
  • 45.
    Cheng, J.; Yan, H.C.; Park, J.H.; et al. Output-feedback control for fuzzy singularly perturbed systems: A nonhomogeneous stochastic communication protocol approach. IEEE Trans. Cybern., 2023, 53: 76−87. doi: 10.1109/TCYB.2021.3089612
  • 46.
    Styan, G.P.H. Hadamard products and multivariate statistical analysis. Linear Algebra Appl., 1973, 6: 217−240. doi: 10.1016/0024-3795(73)90023-2
  • 47.
    Penrose, R. On best approximate solutions of linear matrix equations. Math. Proc. Cambridge Philos. Soc., 1956, 52: 17−19. doi: 10.1017/S0305004100030929
Share this article:
How to Cite
Li, C.; Liu, Y.; Gao, M.; Sheng, L. Fault-tolerant formation consensus control for time-varying multi-agent systems with stochastic communication protocol. International Journal of Network Dynamics and Intelligence 2024, 3 (1), 100004. https://doi.org/10.53941/ijndi.2024.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.