- 1.
Beyer, W. Traveling-matte photography and the blue-screen system: A tutorial paper. J. SMPTE 1965, 74, 217–239. doi: 10.5594/J06054.
- 2.
Porter, T.; Duff, T. Compositing digital images. ACM SIGGRAPH Comput. Graph. 1984, 18, 253–259. doi: 10.1145/964965.808606.
- 3.
Rhemann, C.; Rother, C.; Rav-Acha, A.; et al. High resolution matting via interactive trimap segmentation. In Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 23–28 June 2008; IEEE: New York, 2008; pp. 1–8. doi: 10.1109/CVPR.2008.4587441.
- 4.
Boda, J.; Pandya, D. A survey on image matting techniques. In Proceedings of 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018; IEEE: New York, 2018; pp. 765–770. doi: 10.1109/ICCSP.2018.8523834.
- 5.
Xu, N.; Price, B.; Cohen, S.; et al. Deep image matting. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 21–26 July 2017; IEEE: New York, 2017, pp. 311–320. doi: 10.1109/CVPR.2017.41.
- 6.
Forte, M.; Pitié, F. F, B, alpha matting. arXiv: 2003.07711, 2020.
- 7.
Sengupta, S.; Jayaram, V.; Curless, B.; et al. Background matting: The world is your green screen. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 13–19 June 2020; IEEE: New York, 2020; pp. 2288–2297. doi: 10.1109/CVPR42600.2020.00236.
- 8.
Lin, S.C.; Ryabtsev, A.; Sengupta, S.; et al. Real-time high-resolution background matting. In Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 20–25 June 2021; IEEE: New York, 2021; pp. 8758–8767. doi: 10.1109/CVPR46437.2021.00865.
- 9.
Zhu, Q.S.; Heng, P.A.; Shao, L.; et al. What’s the role of image matting in image segmentation? In Proceedings of 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; IEEE: New York, 2013; pp. 1695–1698. doi: 10.1109/ROBIO.2013.6739711.
- 10.
Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.
- 11.
Xie, H.X.; Lin, C.Y.; Zheng, H.; et al. An UNet-based head shoulder segmentation network. In Proceedings of 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taichung, China, 19–21 May 2018; IEEE: New York, 2018; pp. 1–2. doi: 10.1109/ICCE-China.2018.8448587.
- 12.
Kuang, Z.J.; Tie, X.R. Flow-based video segmentation for human head and shoulders. arXiv: 2104.09752, 2021.
- 13.
Zhang, Z.X.; Liu, Q.J.; Wang, Y.H. Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. doi: 10.1109/LGRS.2018.2802944.
- 14.
Liang, Z.Y.; Guo, K.; Li, X.B.; et al. Person foreground segmentation by learning multi-domain networks. IEEE Trans. Image Process., 2022, 31: 585−597.
- 15.
Miao, J.; Sun, K.Q.; Liao, X.; et al. Human segmentation based on compressed deep convolutional neural network. IEEE Access, 2020, 8: 167585−167595.
- 16.
Zhang, S.H.; Dong, X.; Li, H.; et al. PortraitNet: Real-time portrait segmentation network for mobile device. Comput. Graph., 2019, 80: 104−113.
- 17.
Shi, X.J.; Chen, Z.R.; Wang, H.; et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal Canada, 7–2 December 2015; MIT Press: Cambridge, 2015; pp. 802–810.
- 18.
Ballas, N.; Yao, L.; Pal, C.; et al. Delving deeper into convolutional networks for learning video representations. In Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016; 2016.
- 19.
Lin, S.C.; Yang, L.J.; Saleemi, I.; et al. Robust high-resolution video matting with temporal guidance. In Proceedings of 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 3–8 January 2022; IEEE: New York, 2022; pp. 3132–3141. doi: 10.1109/WACV51458.2022.00319.
- 20.
Azad, R.; Asadi-Aghbolaghi, M.; Fathy, M.; et al. Bi-directional convLSTM U-Net with densley connected convolutions. In Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 27–28 October 2019; IEEE: New York, 2019; pp. 406–415. doi: 10.1109/ICCVW.2019.00052.
- 21.
- 22.
- 23.