- 1.
Wang, L.; Ye, X.; Li, J.L.; et al. GAN-based dual active learning for nosocomial infection detection. IEEE Trans. Network Sci. Eng., 2022, 9: 3282−3291. doi:
10.1109/TNSE.2021.3100322 - 2.
Lu, P.; Song, B.Y.; Xu, L. Human face recognition based on convolutional neural network and augmented dataset. Syst. Sci. Control Eng., 2021, 9: 29−37. doi:
10.1080/21642583.2020.1836526 - 3.
Wang, C.; Wang, Z.D.; Ma, L.F.; et al. Subdomain-alignment data augmentation for Pipeline fault diagnosis: An adversarial self-attention network. IEEE Trans. Ind. Informat. 2023 , in press.
- 4.
Wang, C.; Wang, Z.D.; Ma, L.F.; et al. A novel contrastive adversarial network for minor-class data augmentation: Applications to pipeline fault diagnosis. Knowledge-Based Syst., 2023, 271: 110516. doi:
10.1016/j.knosys.2023.110516 - 5.
Yang, D.D.; Lu, J.Y.; Dong, H.L.; et al. Pipeline signal feature extraction method based on multi-feature entropy fusion and local linear embedding. Syst. Sci. Control Eng., 2022, 10: 407−416. doi:
10.1080/21642583.2022.2063202 - 6.
Sun, J.; Li, H.; Fujita, H.; et al. Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting. Inf. Fus., 2020, 54: 128−144. doi:
10.1016/j.inffus.2019.07.006 - 7.
Su, Y.F.; Cai, H.; Huang, J. The cooperative output regulation by the distributed observer approach. Int. J. Network Dyn. Intellig., 2022, 1: 20−35. doi:
10.53941/ijndi0101003 - 8.
Liu, Y.H.; Huang, F.H.; Yang, H. A fair dynamic content store-based congestion control strategy for named data networking. Syst. Sci. Control Eng., 2022, 10: 73−78. doi:
10.1080/21642583.2022.2031335 - 9.
Dou, J.; Song, Y.; Wei, G.L.; et al. Fuzzy information decomposition incorporated and weighted Relief-F feature selection: When imbalanced data meet incompletion. Inf. Sci., 2022, 584: 417−432. doi:
10.1016/j.ins.2021.10.057 - 10.
He, H.B; Bai, Y.; Garcia, E.A.; et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 01–08 June 2008; IEEE: Hong Kong, China, 2008; pp. 1322–1328.
- 11.
Dou, J.; Wei, G.L.; Song, Y.; et al. Switching triple-weight-SMOTE in empirical feature space for imbalanced and incomplete data. IEEE Trans. Autom. Sci. Eng. 2023 , in press.
- 12.
Hu, J.; Jia, C.Q.; Liu, H.J.; et al. A survey on state estimation of complex dynamical networks. Int. J. Syst. Sci., 2021, 52: 3351−3367. doi:
10.1080/00207721.2021.1995528 - 13.
Zhang, Q.C.; Zhou, Y.Y. Recent advances in non-Gaussian stochastic systems control theory and its applications. Int. J. Network Dyn. Intellig., 2022, 1: 111−119. doi:
10.53941/ijndi0101010 - 14.
Chawla, N.V.; Bowyer, K.; Hall, L.O.; et al. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intellig. Res., 2002, 16: 321−357. doi:
10.1613/jair.953 - 15.
Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and smote. Inf. Sci., 2018, 465: 1−20. doi:
10.1016/j.ins.2018.06.056 - 16.
Barua, S.; Islam, M.; Yao, X.; et al. MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowledge Data Eng., 2014, 26: 405−425. doi:
10.1109/TKDE.2012.232 - 17.
Dai, F.F.; Song, Y.; Si, W.Y.; et al. Improved CBSO: A distributed fuzzy-based adaptive synthetic oversampling algorithm for imbalanced judicial data. Inf. Sci., 2021, 569: 70−89. doi:
10.1016/j.ins.2021.04.017 - 18.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; et al. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, December 2014; MIT Press: Montreal, Canada, 2014; pp. 2672–2680.
- 19.
Douzas, G.; Bacao, F. Effective data generation for imbalanced learning using conditional generative adversarial networks. Exp. Syst. Appl., 2018, 91: 464−471. doi:
10.1016/j.eswa.2017.09.030 - 20.
Gao, X.; Deng, F.; Yue, X.H. Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty. Neurocomputing, 2020, 396: 487−494. doi:
10.1016/j.neucom.2018.10.109 - 21.
Wei, G.L.; Mu, W.M.; Song, Y.; et al. An improved and random synthetic minority oversampling technique for imbalanced data. Knowledge-Based Syst., 2022, 248: 108839. doi:
10.1016/j.knosys.2022.108839 - 22.
Yu, N.X.; Yang, R.; Huang, M.J. Deep common spatial pattern based motor imagery classification with improved objective function. Int. J. Network Dyn. Intellig., 2022, 1: 73−84. doi:
10.53941/ijndi0101007 - 23.
Dou, J.; Gao, Z.H.; Wei, G.L.; et al. Switching synthesizing-incorporated and cluster-based synthetic oversampling for imbalanced binary classification. Eng. Appl. Artif. Intellig., 2023, 123: 106193. doi:
10.1016/j.engappai.2023.106193 - 24.
Wang, X.L.; Sun, Y.; Ding, D.R. Adaptive dynamic programming for networked control systems under communication constraints: A survey of trends and techniques. Int. J. Network Dyn. Intellig., 2022, 1: 85−98. doi:
10.53941/ijndi0101008 - 25.
Shakiba, F.M.; Shojaee, M.; Azizi, S.; et al. Real-time sensing and fault diagnosis for transmission lines. Int. J. Network Dyn. Intellig., 2022, 1: 36−47. doi:
10.53941/ijndi0101004 - 26.
Barua, S.; Islam, M.M.; Murase, K. A novel synthetic minority oversampling technique for imbalanced data set learning. In 18th International Conference on Neural Information Processing, Shanghai, China, 13–17 November 2011; Springer: Shanghai, China, 2011; pp. 735–744.
- 27.
Ting, K.M. An instance-weighting method to induce cost-sensitive trees. IEEE Trans. Knowledge Data Eng., 2002, 14: 659−665. doi:
10.1109/TKDE.2002.1000348 - 28.
Jia, J.; Zhai, L.M.; Ren, W.X.; et al. An effective imbalanced jpeg steganalysis scheme based on adaptive cost-sensitive feature learning. IEEE Trans. Knowledge Data Eng., 2022, 34: 1038−1052. doi:
10.1109/TKDE.2020.2995070 - 29.
Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett., 1999, 9: 293−300. doi:
10.1023/A:1018628609742 - 30.
Wang, Z.R.; Wang, J.; Wang, Y.R. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition. Neurocomputing, 2018, 310: 213−222. doi:
10.1016/j.neucom.2018.05.024 - 31.
Guo, Q.W.; Li, Y.B.; Song, Y.; et al. Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network. IEEE Trans. Ind. Informat., 2020, 16: 2044−2053. doi:
10.1109/TII.2019.2934901 - 32.
Zhang, H.C.; Zhang, Y.N.; Nasrabadi, N.M.; et al. Joint-structured-sparsity-based classification for multiple-measurement transient acoustic signals. IEEE Trans. Syst. Man Cybernet. Part B Cybernet., 2012, 42: 1586−1598. doi:
10.1109/TSMCB.2012.2196038 - 33.
Tropp, J.A. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Process., 2006, 86: 589−602. doi:
10.1016/j.sigpro.2005.05.031 - 34.
Xu, Z.B.; Chang, X.Y.; Xu, F. M.; et al. L1 /2 regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neural Networks Learn. Syst., 2012, 23: 1013−1027. doi:
10.1109/TNNLS.2012.2197412 - 35.
Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. The mahalanobis distance. Chemometr. Intellig. Lab. Syst., 2000, 50: 1−18. doi:
10.1016/S0169-7439(99)00047-7 - 36.
Daffertshofer, A.; Lamoth, C.J.C.; Meijer, O.G.; et al. PCA in studying coordination and variability: A tutorial. Clin. Biomech., 2004, 19: 415−428. doi:
10.1016/j.clinbiomech.2004.01.005 - 37.
Xu, L.; Song, B.Y.; Cao, M.Y. An improved particle swarm optimization algorithm with adaptive weighted delay velocity. Syst. Sci. Control Eng., 2021, 9: 188−197. doi:
10.1080/21642583.2021.1891153 - 38.
Qu, L.; Zhu, H.S.; Zheng, R.Q.; et al. ImGAGN: Imbalanced network embedding via generative adversarial graph networks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining), Singapore, 14–18 August 2021; ACM: Singapore, 2021; pp. 1390–1398.
- 39.
- 40.
Tao, X.M.; Li, Q.; Guo, W.J.; et al. Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification. Inf. Sci., 2019, 487: 31−56. doi:
10.1016/j.ins.2019.02.062 - 41.
Mao, J.Y.; Sun, Y.; Yi, X.J.; et al. Recursive filtering of networked nonlinear systems: A survey. Int. J. Syst. Sci., 2021, 52: 1110−1128. doi:
10.1080/00207721.2020.1868615 - 42.
Ju, Y.M.; Tian, X.; Liu, H.J.; et al. Fault detection of networked dynamical systems: A survey of trends and techniques. Int. J. Syst. Sci., 2021, 52: 3390−3409. doi:
10.1080/00207721.2021.1998722 - 43.
Zong, W.W.; Huang, G.B.; Chen, Y.Q. Weighted extreme learning machine for imbalance learning. Neurocomputing, 2013, 101: 229−242. doi:
10.1016/j.neucom.2012.08.010 - 44.
Wen, P.Y.; Li, X.R.; Hou, N.; et al. Distributed recursive fault estimation with binary encoding schemes over sensor networks. Syst. Sci. Control Eng., 2022, 10: 417−427. doi:
10.1080/21642583.2022.2063203 - 45.
Li, H.; Wu, P.S.; Zeng, N.Y.; et al. Liu and Alsaadi, F.E. A survey on parameter identification, state estimation and data analytics for lateral flow immunoassay: From systems science perspective. Int. J. Syst Sci, 2022, 53: 3556−3576. doi:
10.1080/00207721.2022.2083262 - 46.
Freund, J. Boosting a weak learning algorithm by majority. Inf. Comput., 1995, 121: 256−285. doi:
10.1006/inco.1995.1136 - 47.
- 48.
Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot., 2013, 7: 21. doi:
10.3389/fnbot.2013.00021 - 49.
Liu, Z.N.; Cao, W.; Gao, Z.F.; et al. Self-paced ensemble for highly imbalanced massive data classification. In IEEE 36th International Conference on Data Engineering, Dallas, TX, USA, 20–24 April 2020; IEEE: Dallas, TX, USA, 2019; pp. 841–852.
- 50.
De Winter, J.F.C.; Dodou, D. Five-point likert items: T test versus Mann-Whitney-Wilcoxon. Pract. Assessm. Res. Evaluat., 2010, 15: 1−12. doi:
10.7275/bj1p-ts64