- 1.
Elijah, O.; Rahman, T. A.; Orikumhi, I.; et al, An overview of internet of things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J., 2018, 5: 3758−3773.
- 2.
- 3.
- 4.
- 5.
de Castro Tomé, M.; Nardelli, P.H.J.; Alves, H, Long-range low-power wireless networks and sampling strategies in electricity metering. IEEE Trans. Ind. Electron., 2019, 66: 1629−1637.
- 6.
Magrin, D.; Centenaro, M.; Vangelista, L. Performance evaluation of LoRa networks in a smart city scenario. In
2017 IEEE International Conference on Communications (ICC),
Paris,
France,
21–25 May 2017; IEEE: Paris, 2017; pp. 1–7. doi:
10.1109/ICC.2017.7996384 - 7.
Huang, P.; Xiao, L.; Soltani, S.; et al, The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutorials, 2013, 15: 101−120.
- 8.
Raza, U.; Kulkarni, P.; Sooriyabandara, M, Low power wide area networks: An overview. IEEE Commun. Surv. Tutorials, 2017, 19: 855−873.
- 9.
- 10.
- 11.
- 12.
Sinha, R.S.; Wei, Y.Q.; Hwang, S.H, A survey on LPWA technology: LoRa and NB-IoT. ICT Express, 2017, 3: 14−21.
- 13.
Sun, Z.H.; Yang, H.Q.; Liu, K.; et al, Recent advances in LoRa: A comprehensive survey. ACM Trans. Sens. Netw., 2022, 18: 67.
- 14.
Gkotsiopoulos, P.; Zorbas, D.; Douligeris, C, Performance determinants in LoRa networks: A literature review. IEEE Commun. Surv. Tutorials, 2021, 23: 1721−1758.
- 15.
Li, C. N.; Cao, Z.C, LoRa networking techniques for large-scale and long-term IoT: A down-to-top survey. ACM Comput. Surv., 2023, 55: 52.
- 16.
Sharma, N.; Shamkuwar, M.; Singh, I. The history, present and future with IoT. In
Internet of Things and Big Data Analytics for Smart Generation; Balas, V. ; Solanki, V. ; Kumar, R. ;
et al, Eds. ; Springer: Cham, 2019; pp. 27–51. doi:
10.1007/978-3-030-04203-5_3 - 17.
Goudos, S. K.; Dallas, P. I.; Chatziefthymiou, S.; et al, A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Pers. Commun., 2017, 97: 1645−1675.
- 18.
Savaglio, C.; Ganzha, M.; Paprzycki, M.; et al, Agent-based internet of things: State-of-the-art and research challenges. Future Gener. Comput. Syst., 2020, 102: 1038−1053.
- 19.
Glaroudis, D.; Iossifides, A.; Chatzimisios, P, Survey, comparison and research challenges of IoT application protocols for smart farming. Comput. Netw., 2020, 168: 107037.
- 20.
Mekki, K.; Bajic, E.; Chaxel, F.; et al, A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 2019, 5: 1−7.
- 21.
Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; et al, Understanding the limits of LoRaWAN. IEEE Commun. Mag., 2017, 55: 34−40.
- 22.
Devalal, S.; Karthikeyan, A. LoRa technology-an overview. In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; IEEE: Coimbatore, 2018; pp. 284–290. doi:10.1109/ICECA.2018.8474715
- 23.
Chaudhari, B. S.; Zennaro, M.; Borkar, S, LPWAN technologies: Emerging application characteristics, requirements, and design considerations. Future Internet, 2020, 12: 46.
- 24.
Perwej, Y.; Haq, K.; Parwej, F.; et al, The internet of things (IoT) and its application domains. Int. J. Comput. Appl., 2019, 182: 36−49.
- 25.
- 26.
- 27.
Lavric, A.; Petrariu, A.I. LoRaWAN communication protocol: The new era of IoT. In
2018 International Conference on Development and Application Systems (DAS),
Suceava,
Romania,
24–
26 May 2018; IEEE: Suceava, 2018; pp. 74–77. doi:
10.1109/DAAS.2018.8396074 - 28.
Jouhari, M.; Amhoud, E.M.; Saeed, N.;
et al. A survey on scalable LoRaWAN for massive IoT: Recent advances, potentials, and challenges. arXiv preprint arXiv: 2202.11082, 2022. Available online:
https://arxiv.org/pdf/2202.11082.pdf (accessed on 13 November 2022).
- 29.
Siddique, A.; Prabhu, B.; Chaskar, A.; et al, A review on intelligent agriculture service platform with LoRa based wireless sensor network. Int. Res. J. Eng. Technol., 2019, 6: 2539−2542.
- 30.
Vejlgaard, B.; Lauridsen, M.; Nguyen, H.;
et al. Coverage and capacity analysis of Sigfox, LoRa, GPRS, and NB-IoT. In
2017 IEEE 85th Vehicular Technology Conference (VTC Spring),
Sydney,
NSW,
Australia,
04–07 June 2017; IEEE: Sydney, 2017; pp. 1–5. doi:
10.1109/VTCSpring.2017.8108666 - 31.
Naik, N. LPWAN technologies for IoT systems: Choice between ultra narrow band and spread spectrum. In
2018 IEEE International Systems Engineering Symposium (ISSE),
Rome,
Italy,
01–03 October 2018; IEEE: Rome, 2018; pp. 1–8. doi:
10.1109/SysEng.2018.8544414 - 32.
Tsotsolas, N.; Komisopoulos, F.; Papadopoulos, P.; et al. An integrated LoRa-based IoT platform serving smart farming and agro-logistics. Emerging Ecosystem-Centric Business Models for Sustainable Value Creation. IGI Global, 2022: 132−158.
- 33.
- 34.
Petäjäjärvi, J.; Mikhaylov, K.; Pettissalo, M.;
et al. Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage.
Int.
J.
Distrib.
Sens.
Netw.
2017, in press. doi:
10.1177/1550147717699412 - 35.
Mroue, H.; Nasser, A.; Parrein, B.;
et al. Analytical and simulation study for LoRa modulation. In
2018 25th International Conference on Telecommunications (ICT),
Saint-Malo,
France,
26–28 June 2018; IEEE: Saint-Malo, 2018; pp. 655–659. doi:
10.1109/ICT.2018.8464879 - 36.
Pasolini, G, On the LoRa chirp spread spectrum modulation: Signal properties and their impact on transmitter and receiver architectures. IEEE Trans. Wireless Commun., 2022, 21: 357−369.
- 37.
Croce, D.; Gucciardo, M.; Mangione, S.; et al, Impact of LoRa imperfect orthogonality: Analysis of link-level performance. IEEE Commun. Lett., 2018, 22: 796−799.
- 38.
Semtech Corporation. LoRa Modulation Basics. 2015.
- 39.
Nguyen, T.T.; Nguyen, H.H.; Barton, R.; et al, Efficient design of chirp spread spectrum modulation for low-power wide-area networks. IEEE Internet Things J., 2019, 6: 9503−9515.
- 40.
de Almeida, I.B.F.; Chafii, M.; Nimr, A.; et al, Alternative chirp spread spectrum techniques for LPWANs. IEEE Trans. Green Commun. Netw., 2021, 5: 1846−1855.
- 41.
Hanif, M.; Nguyen, H.H, Frequency-shift chirp spread spectrum communications with index modulation. IEEE Internet Things J., 2021, 8: 17611−17621.
- 42.
Augustin, A.; Yi, J. Z.; Clausen, T.; et al, A study of LoRa: Long range & low power networks for the internet of things. Sensors, 2016, 16: 1466.
- 43.
Ferre, G. Collision and packet loss analysis in a LoRaWAN network. In
2017 25th European Signal Processing Conference (EUSIPCO),
Kos,
Greece,
28 August 2017–02 September 2017; IEEE: Kos, 2017; pp. 2586–2590. doi:
10.23919/EUSIPCO.2017.8081678 - 44.
Sørensen, R.B.; Kim, D.M.; Nielsen, J.J.; et al, Analysis of latency and MAC-layer performance for class a LoRaWAN. IEEE Wireless Commun. Lett., 2017, 6: 566−569.
- 45.
Boquet, G.; Tuset-Peiró, P.; Adelantado, F.; et al, LR-FHSS: Overview and performance analysis. IEEE Commun. Mag., 2020, 59: 30−36.
- 46.
- 47.
Boyes, H.; Hallaq, B.; Cunningham, J.; et al, The industrial internet of things (IIoT): An analysis framework. Comput. Ind., 2018, 101: 1−12.
- 48.
Bartolomeu, P.; Alam, M.; Ferreira, J.; et al, Supporting deterministic wireless communications in industrial IoT. IEEE Trans. Ind. Inf., 2018, 14: 4045−4054.
- 49.
Wang, W.B.; Capitaneanu, S.L.; Marinca, D.; et al, Comparative analysis of channel models for industrial IoT wireless communication. IEEE Access, 2019, 7: 91627−91640.
- 50.
Foukalas, F.; Pop, P.; Theoleyre, F.; et al. Dependable wireless industrial IoT networks: Recent advances and open challenges. In 2019 IEEE European Test Symposium (ETS), Baden-Baden, Germany, 27–31 May 2019; IEEE: Baden-Baden, 2019; pp. 1–10. doi:10.1109/ETS.2019.8791551
- 51.
Rizzi, M.; Ferrari, P.; Flammini, A.;
et al. Using LoRa for industrial wireless networks. In
2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS),
Trondheim,
Norway,
31 May 2017–02 June 2017; IEEE: Trondheim, 2017; pp. 1–4. doi:
10.1109/WFCS.2017.7991972 - 52.
Leonardi, L.; Battaglia, F.; Lo Bello, L, RT-LoRa: A medium access strategy to support real-time flows over LoRa-based networks for industrial IoT applications. IEEE Internet Things J., 2019, 6: 10812−10823.
- 53.
Hoang, Q.L.; Jung, W.S.; Yoon, T.; et al, A real-time LoRa protocol for industrial monitoring and control systems. IEEE Access, 2020, 8: 44727−44738.
- 54.
Jörke, P.; Böcker, S.; Liedmann, F.;
et al. Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz. In
2017 IEEE 28th Annual International Symposium on Personal,
Indoor,
and Mobile Radio Communications (PIMRC),
Montreal,
QC,
Canada,
08–13 October 2017; IEEE: Montreal, 2017; pp. 1–6. doi:
10.1109/PIMRC.2017.8292708 - 55.
Premsankar, G.; Ghaddar, B.; Slabicki, M.; et al, Optimal configuration of LoRa networks in smart cities. IEEE Trans. Ind. Inf., 2020, 16: 7243−7254.
- 56.
Lavric, A, LoRa (long-range) high-density sensors for internet of things. J. Sens., 2019, 2019: 3502987.
- 57.
Lee, H.C.; Ke, K.H, Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: Design and evaluation. IEEE Trans. Instrum. Meas., 2018, 67: 2177−2187.
- 58.
Almeida, N.C.; Rolle, R.P.; Godoy, E.P.;
et al. Proposal of a hybrid LoRa Mesh/LoRaWAN network. In
2020 IEEE International Workshop on Metrology for Industry 4.
0 & IoT,
Roma,
Italy,
03–05 June 2020; IEEE: Roma, 2020; pp. 702–707. doi:
10.1109/MetroInd4.0IoT48571.2020.9138206 - 59.
Hong, S. G.; Yao, F.; Ding, Y. L.; et al, A hierarchy-based energy-efficient routing protocol for LoRa-mesh network. IEEE Internet Things J., 2022, 9: 22836−22849.
- 60.
Huh, H.; Kim, J.Y. LoRa-based mesh network for IoT applications. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; IEEE: Limerick, 2019; pp. 524–527. doi:10.1109/WF-IoT.2019.8767242
- 61.
Osorio, A.; Calle, M.; Soto, J. D.; et al, Routing in LoRaWAN: Overview and challenges. IEEE Commun. Mag., 2020, 58: 72−76.
- 62.
Centelles, R. P.; Freitag, F.; Meseguer, R.; et al, Beyond the star of stars: An introduction to multihop and mesh for LoRa and LoRaWAN. IEEE Pervas. Comput., 2021, 20: 63−72.
- 63.
Fraire, J.A.; Céspedes, S.; Accettura, N. Direct-to-satellite IoT - a survey of the state of the art and future research perspectives. In
18th International Conference on Ad-Hoc Networks and Wireless on Ad-Hoc,
Mobile,
and Wireless Networks,
Luxembourg,
Luxembourg,
October 1–3,
2019; Springer: Luxembourg, 2019; pp. 241–258. doi:
10.1007/978-3-030-31831-4_17 - 64.
Fraire, J.A.; Henn, S.; Dovis, F.;
et al. Sparse satellite constellation design for LoRa-based direct-to-satellite internet of things. In
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
Taipei,
China,
07–11 December 2020; IEEE: Taipei, China, 2020; pp. 1–6. doi:
10.1109/GLOBECOM42002.2020.9348042 - 65.
Fernandez, L.; Ruiz-De-Azua, J. A.; Calveras, A.; et al, Assessing LoRa for satellite-to-earth communications considering the impact of ionospheric scintillation. IEEE Access, 2020, 8: 165570−165582.
- 66.
Álvarez, G.; Fraire, J. A.; Hassan, K. A.; et al, Uplink transmission policies for LoRa-based direct-to-satellite IoT. IEEE Access, 2022, 10: 72687−72701.
- 67.
- 68.
Ullah, M. A.; Mikhaylov, K.; Alves, H, Analysis and simulation of LoRaWAN LR-FHSS for direct-to-satellite scenario. IEEE Wireless Commun. Lett., 2022, 11: 548−552.
- 69.
Chaari, L.; Fourati, M.; Rezgui, J. Heterogeneous LoRaWAN & LEO satellites networks concepts, architectures and future directions. In
2019 Global Information Infrastructure and Networking Symposium (GIIS),
Paris,
France,
18–20 December 2019; IEEE: Paris, 2019; pp. 1–6. doi:
10.1109/GIIS48668.2019.9044966 - 70.
Doroshkin, A. A.; Zadorozhny, A. M.; Kus, O. N.; et al, Experimental study of LoRa modulation immunity to Doppler effect in CubeSat radio communications. IEEE Access, 2019, 7: 75721−75731.
- 71.
Colavolpe, G.; Foggi, T.; Ricciulli, M.; et al, Reception of LoRa signals from LEO satellites. IEEE Trans. Aerosp. Electron. Syst., 2019, 55: 3587−3602.
- 72.
Dimitrievski, A.; Filiposka, S.; Melero, F.J.; et al, Rural healthcare IoT architecture based on low-energy LoRa. Int. J. Environ. Res. Public Health, 2021, 18: 7660.
- 73.
Wu, F.; Qiu, C.K.; Wu, T.Y.; et al, Edge-based hybrid system implementation for long-range safety and healthcare IoT applications. IEEE Internet Things J., 2021, 8: 9970−9980.
- 74.
Adebusola, J.A.; Ariyo, A.A.; Elisha, O.A.;
et al. An overview of 5G technology. In
2020 International Conference in Mathematics,
Computer Engineering and Computer Science (ICMCECS),
Ayobo,
Nigeria,
18–21 March 2020; IEEE: Ayobo, 2020; pp. 1–4. doi:
10.1109/ICMCECS47690.2020.240853 - 75.
Rao, V.C.S.; Kumarswamy, P.; Phridviraj, M.S.B.;
et al. 5G enabled industrial internet of things (IIoT) architecture for smart manufacturing. In
Data Engineering and Communication Technology; Reddy, K.A.; Devi, B.R.; George, B.;
et al, Eds.; Springer: Singapore, 2021; pp. 193–201. doi:
10.1007/978-981-16-0081-4_20 - 76.
Larrañaga, A.; Lucas-Estañ, M. C.; Martinez, I.;
et al. Analysis of 5G-TSN integration to support industry 4.0. In
2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Vienna,
Austria,
08–11 September 2020; IEEE: Vienna, 2020; pp. 1111–1114. doi:
10.1109/ETFA46521.2020.9212141 - 77.
Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; et al, Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Commun. Surv. Tutorials, 2019, 21: 88−145.
- 78.
Gundall, M.; Huber, C.; Rost, P.;
et al. Integration of 5G with TSN as prerequisite for a highly flexible future industrial automation: Time synchronization based on IEEE 802.1AS. In
IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society,
Singapore,
18–21 October 2020; IEEE: Singapore, 2020; pp. 3823–3830. doi:
10.1109/IECON43393.2020.9254296 - 79.
Liu, F.; Tang, G. M.; Li, Y.; et al, A survey on edge computing systems and tools. Proc. IEEE, 2019, 107: 1537−1562.
- 80.
Sarker, V.K. ; Queralta, J.P.; Gia, T.N.;
et al. A survey on LoRa for IoT: Integrating edge computing. In:
2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC),
Rome,
Italy,
10–13 June 2019; IEEE: Rome, 2019; pp. 295–300. doi:
10.1109/FMEC.2019.8795313 - 81.
Yu, W.; Liang, F.; He, X. F.; et al, A survey on the edge computing for the internet of things. IEEE Access, 2018, 6: 6900−6919.
- 82.
Drăgulinescu, A.M.C.; Manea, A.F.; Fratu, O.; et al, LoRa-based medical IoT system architecture and testbed. Wireless Pers Commun, 2022, 126: 25−47.
- 83.
Gia, T.N.; Qingqing, L.; Queralta, J.P.;
et al. Edge AI in smart farming IoT: CNNs at the edge and fog computing with LoRa. In
2019 IEEE AFRICON,
Accra,
Ghana,
25–27 September 2019; IEEE: Accra, 2019; pp. 1–6. doi:
10.1109/AFRICON46755.2019.9134049 - 84.
Hou, L.; Zheng, K.; Liu, Z. M.; et al, Design and prototype implementation of a blockchain-enabled LoRa system with edge computing. IEEE Internet Things J., 2021, 8: 2419−2430.
- 85.
Kumari, P.; Mishra, R.; Gupta, H.P.;
et al. An energy efficient smart metering system using edge computing in LoRa network.
IEEE Trans.
Sustainable Comput.
2021, in press. doi:
10.1109/TSUSC.2021.3049705 - 86.
Queralta, J.P.; Gia, T.N.; Tenhunen, H.;
et al. Edge-AI in LoRa-based health monitoring: Fall detection system with fog computing and LSTM recurrent neural networks. In
2019 42nd International Conference on Telecommunications and Signal Processing (TSP),
Budapest,
Hungary,
01–03 July 2019; IEEE: Budapest, 2019; pp. 601–604. doi:
10.1109/TSP.2019.8768883 - 87.
Ferreira, C.M.S.; Oliveira, R.A.R.; Silva, J.S. Low-energy smart cities network with LoRa and Bluetooth. In
2019 7th IEEE International Conference on Mobile Cloud Computing,
Services,
and Engineering (MobileCloud),
Newark,
CA,
USA,
04–09 April 2019; IEEE: Newark, 2019; pp. 24–29. doi:
10.1109/MobileCloud.2019.00011 - 88.
Barro, P.A.; Zennaro, M.; Pietrosemoli, E. TLTN – The local things network: On the design of a LoRaWAN gateway with autonomous servers for disconnected communities. In
2019 Wireless Days (WD),
Manchester,
UK,
24–26 April 2019; IEEE: Manchester, 2019; pp. 1–4. doi:
10.1109/WD.2019.8734239