- 1.
Kumar, A.N.; Sanjay, C.; Chakravarthy, M.; et al, A single-ended directional relaying scheme for double-circuit transmission line using fuzzy expert system. Complex Intell. Syst., 2020, 6: 335−346.
- 2.
Raza, A.; Benrabah, A.; Alquthami, T.; et al, A review of fault diagnosing methods in power transmission systems. Appl. Sci., 2020, 10: 1312.
- 3.
Yusuff, A.A.; Jimoh, A.A.; Munda, J.L, Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression. Electr. Power Syst. Res., 2014, 110: 73−83.
- 4.
Livani, H.; Evrenosoglu, C.Y, A machine learning and wavelet-based fault location method for hybrid transmission lines. IEEE Trans. Smart Grid, 2014, 5: 51−59.
- 5.
Khodaparast, J.; Khederzadeh, M, Three-phase fault detection during power swing by transient monitor. IEEE Trans. Power Syst., 2015, 30: 2558−2565.
- 6.
Guillen, D.; Paternina, M.R.A.; Ortiz-Bejar, J.; et al, Fault detection and classification in transmission lines based on a PSD index. IET Gener. Trans. Distrib., 2018, 12: 4070−4078.
- 7.
Khan, A.Q.; Ullah, Q.; Sarwar, M.; et al, Transmission line fault detection and identification in an interconnected power network using phasor measurement units. IFAC-PapersOnLine, 2018, 51: 1356−1363.
- 8.
Ziegler, G. Numerical Distance Protection: Principles and Applications, 4th ed. Wiley: Hoboken, NJ, USA, 2011.
- 9.
Asprou, M.; Kyriakides, E.; Albu, M. The effect of PMU measurement chain quality on line parameter calculation. In
2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; IEEE: Turin, Italy, 2017; pp. 1–6. doi:
10.1109/I2MTC.2017.7969757 - 10.
Jana, S.; De, A, A novel zone division approach for power system fault detection using ANN-based pattern recognition technique. Can. J. Electr. Comput. Eng., 2017, 40: 275−283.
- 11.
Li, W.L.; Monti, A.; Ponci, F, Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Trans. Instrum. Meas., 2014, 63: 2651−2665.
- 12.
Li, H.F.; Hu, G.Z.; Li, J.Q.; et al., Intelligent fault diagnosis for large-scale rotating machines using binarized deep neural networks and random forests. IEEE Trans. Autom. Sci. Eng., 2022, 19: 1109−1119.
- 13.
Ravikumar, B.; Thukaram, D.; Khincha, H.P, Application of support vector machines for fault diagnosis in power transmission system. IET Gener. Trans. Distrib., 2008, 2: 119−130.
- 14.
Swetapadma, A.; Yadav, A, A novel decision tree regression-based fault distance estimation scheme for transmission lines. IEEE Trans. Power Delivery, 2017, 32: 234−245.
- 15.
Upendar, J.; Gupta, C.P.; Singh, G.K, Statistical decision-tree based fault classification scheme for protection of power transmission lines. Int. J. Electr. Power Energy Syst., 2012, 36: 1−12.
- 16.
Chen, Y.Q.; Fink, O.; Sansavini, G, Combined fault location and classification for power transmission lines fault diagnosis with integrated feature extraction. IEEE Trans. Ind. Electron., 2018, 65: 561−569.
- 17.
Xie, Y.Y.; Li, C.J.; Lv, Y.J.; et al, Predicting lightning outages of transmission lines using generalized regression neural network. Appl. Soft Comput., 2019, 78: 438−446.
- 18.
Thwe, E.P.; Oo, M.M, Fault detection and classification for transmission line protection system using artificial neural network. J. Electr. Electron. Eng., 2016, 4: 89−96.
- 19.
Shakiba, F.M. CMOS Based Implementation of Hyperbolic Tangent Activation Function for Artificial Neural Network. Master’s Thesis, Southern Illinois University, Carbondale, USA, 2018.
- 20.
Shakiba, F.M.; Zhou, M, Novel analog implementation of a hyperbolic tangent neuron in artificial neural networks. IEEE Trans. Ind. Electron., 2021, 68: 10856−10867.
- 21.
Koley, E.; Yadav, A.; Thoke, A.S, A new single-ended artificial neural network-based protection scheme for shunt faults in six-phase transmission line. Int. Trans. Electr. Energy Syst., 2015, 25: 1257−1280.
- 22.
Abdel-Aziz, A.M.; Hasaneen, B.M.; Dawood, A.A, Detection and classification of one conductor open faults in parallel transmission line using artificial neural network. Int. J. Sci. Res. Eng. Trends, 2016, 2: 139−146.
- 23.
Fahim, S.R.; Sarker, Y.; Sarker, S.K.; et al, Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification. Electr. Power Syst. Res., 2020, 187: 106437.
- 24.
Fuada, S.; Shiddieqy, H.A.; Adiono, T.; et al, A high-accuracy of transmission line faults (TLFs) classification based on convolutional neural network. Int. J. Electron. Telecommun., 2020, 66: 655−664.
- 25.
Rai, P.; Londhe, N.D.; Raj, R.; et al, Fault classification in power system distribution network integrated with distributed generators using CNN. Electr. Power Syst. Res., 2021, 192: 106914.
- 26.
Costa, F.B.; Monti, A.; Lopes, F.V.; et al, Two-terminal traveling-wave-based transmission-line protection. IEEE Trans. Power Delivery, 2017, 32: 1382−1393.
- 27.
Hasheminejad, S.; Seifossadat, S.G.; Razaz, M.; et al, Ultra-high-speed protection of transmission lines using traveling wave theory. Electr. Power Syst. Res., 2016, 132: 94−103.
- 28.
Yadav, A.; Swetapadma, A, Enhancing the performance of transmission line directional relaying, fault classification and fault location schemes using fuzzy inference system. IET Gener. Trans. Distrib., 2015, 9: 580−591.
- 29.
Rahmati, A.; Adhami, R. A fault detection and classification technique based on sequential components. In
2013 IEEE Industry Applications Society Annual Meeting, Lake Buena Vista, FL, USA, 06–11 October 2013; IEEE: Lake Buena Vista, FL, USA, 2013; pp. 1–5. doi:
10.1109/IAS.2013.6682618 - 30.
Chakraborty, C.; Verma, V, Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation. IEEE Trans. Ind. Electron., 2015, 62: 1943−1954.
- 31.
Ohrstrom, M.; Soder, L, Fast protection of strong power systems with fault current limiters and PLL-aided fault detection. IEEE Trans. Power Delivery, 2011, 26: 1538−1544.
- 32.
Pei, X.Y.; Pang, H.; Li, Y.F.; et al, A novel ultra-high-speed traveling-wave protection principle for VSC-based DC grids. IEEE Access, 2019, 7: 119765−119773.
- 33.
Cervantes, M.; Kocar, I.; Mahseredjian, J.; et al. A traveling wave based fault location method using unsynchronized current measurements. In
2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 04–08 August 2019; IEEE: Atlanta, GA, USA, 2019; pp. 1. doi:
10.1109/PESGM40551.2019.8974132 - 34.
Ritzmann, D.; Wright, P.S.; Holderbaum, W.; et al, A method for accurate transmission line impedance parameter estimation. IEEE Trans. Instrum. Meas., 2016, 65: 2204−2213.
- 35.
Pegoraro, P.A.; Brady, K.; Castello, P.; et al, Line impedance estimation based on synchrophasor measurements for power distribution systems. IEEE Trans. Instrum. Meas., 2019, 68: 1002−1013.
- 36.
Waters, D.H.; Hoffman, J.; Kumosa, M, Monitoring of overhead transmission conductors subjected to static and impact loads using fiber Bragg grating sensors. IEEE Trans. Instrum. Meas., 2019, 68: 595−605.
- 37.
Kazim, M.; Khawaja, A.H.; Zabit, U.; et al, Fault detection and localization for overhead 11-kV distribution lines with magnetic measurements. IEEE Trans. Instrum. Meas., 2020, 69: 2028−2038.
- 38.
Koley, E.; Kumar, R.; Ghosh, S, Low cost microcontroller based fault detector, classifier, zone identifier and locator for transmission lines using wavelet transform and artificial neural network: A hardware co-simulation approach. Int. J. Electr. Power Energy Syst., 2016, 81: 346−360.
- 39.
Gururajapathy, S.S.; Mokhlis, H.; Illias, H.A, Fault location and detection techniques in power distribution systems with distributed generation: A review. Renewable Sustainable Energy Rev., 2017, 74: 949−958.
- 40.
Department of energy. 2018. Available online:https://www.energy.gov/ne/articles/department-energy-report-explores-us-advanced-small-modular-reactors-boost-grid(access on 6 October 2022).
- 41.
Reddy, M.J.B.; Gopakumar, P.; Mohanta, D.K, A novel transmission line protection using DOST and SVM. Eng. Sci. Technol. Int. J., 2016, 19: 1027−1039.
- 42.
Koley, E.; Verma, K.; Ghosh, S, An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only. SpringerPlus, 2015, 4: 551.
- 43.
Roy, N.; Bhattacharya, K, Detection, classification, and estimation of fault location on an overhead transmission line using S-transform and neural network. Electr. Power Compon. Syst., 2015, 43: 461−472.
- 44.
Ray, P.; Mishra, D.P, Support vector machine based fault classification and location of a long transmission line. Eng. Sci. Technol. Int. J., 2016, 19: 1368−1380.
- 45.
Malathi, V.; Marimuthu, N.S.; Baskar, S.; et al, Application of extreme learning machine for series compensated transmission line protection. Eng. Appl. Artif. Intell., 2011, 24: 880−887.
- 46.
Chen, K.J.; Hu, J.; He, J.L, Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder. IEEE Trans. Smart Grid, 2018, 9: 1748−1758.
- 47.
Lukach, D.; Taylor, R, Transmission line applications of directional ground overcurrent relays. IEEE Power Energy Soc., 2014, 10.
- 48.
Kiruthika, M.; Bindu, S, Classification of electrical power system conditions with convolutional neural networks. Eng. Technol. Appl. Sci. Res., 2020, 10: 5759−5768.
- 49.
Lei, X.S.; Sui, Z.H, Intelligent fault detection of high voltage line based on the faster R-CNN. Measurement, 2019, 138: 379−385.
- 50.
Wang, Y.H.; Li, Q.Q.; Chen, B, Image classification towards transmission line fault detection via learning deep quality-aware fine grained categorization. J. Vis. Commun. Image R., 2019, 64: 102647.
- 51.
Dai, Z.Y.; Yi, J.J.; Zhang, Y.J.; et al, Fast and accurate cable detection using CNN. Appl. Intell., 2020, 50: 4688−4707.
- 52.
Dong, J.J.; Chen, W.; Xu, C. Transmission line detection using deep convolutional neural network. In
2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; IEEE: Chongqing, China, 2019; pp. 977–980. doi:
10.1109/ITAIC.2019.8785845 - 53.
Moravej, Z.; Pazoki, M.; Khederzadeh, M, New pattern-recognition method for fault analysis in transmission line with UPFC. IEEE Trans. Power Delivery, 2015, 30: 1231−1242.
- 54.
Swetapadma, A.; Yadav, A, A novel single-ended fault location scheme for parallel transmission lines using k-nearest neighbor algorithm. Comput. Electr. Eng., 2018, 69: 41−53.
- 55.
- 56.
Zhang, W.J.; Wang, J.C.; Lan, F.P.; et al, Dynamic hand gesture recognition based on short-term sampling neural networks. IEEE/CAA J. Autom. Sin., 2021, 8: 110−120.
- 57.
Harford, S.; Karim, F.; Darabi, H, Generating adversarial samples on multivariate time series using variational autoencoders. IEEE/CAA J. Autom. Sin., 2021, 8: 1523−1538.
- 58.
Luo, X.D.; Wen, X.H.; Zhou, M.C.; et al, Decision-tree-initialized dendritic neuron model for fast and accurate data classification. IEEE Trans. Neural Netw. Learn. Syst., 2022, 33: 4173−4183.
- 59.
Huang, Z.H.; Yang, S.Z.; Zhou, M.C.; et al, Feature map distillation of thin nets for low-resolution object recognition. IEEE Trans. Image Process., 2022, 31: 1364−1379.
- 60.
Ohata, E.F.; Bezerra, G.M.; das Chagas, J.V.S.; et al, Automatic detection of COVID-19 infection using chest X-ray images through transfer learning. IEEE/CAA J. Autom. Sin., 2021, 8: 239−248.
- 61.
Yao, S.Y.; Kang, Q.; Zhou, M.C.; et al, A survey of transfer learning for machinery diagnostics and prognostics. Artif. Intell. Rev., 2022: 1−52.
- 62.
Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; et al, Generalized fault diagnosis method of transmission lines using transfer learning technique. Neurocomputing, 2022, 500: 556−566.
- 63.
Shakiba, F.M.; Azizi, S.M.; Zhou, M.C., A transfer learning-based method to detect insulator faults of high-voltage transmission lines via aerial images: Distinguishing intact and broken insulator images. IEEE Syst. Man Cybern. Mag., 2022, 8: 15−25.
- 64.
Shakiba, F.M.; Azizi, S.M.; Zhou, M.C.; et al. Application of machine learning methods in fault detection and classification of power transmission lines: a survey. Artif. Intell. Rev. 2022, in press. doi:10.1007/s10462-022-10296-0
- 65.
Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; et al. Robustness analysis of generalized regression neural network-based fault diagnosis for transmission lines. In 2022 IEEE International Conference on Systems, Man, and Cybernetics, Prague, Czech Republic, 09–12 October 2022; IEEE: Prague, Czech Republic, 2022; pp. 131–136. doi:10.1109/SMC53654.2022.9945342