2504000050
  • Open Access
  • Article
Real-Time Sensing and Fault Diagnosis for Transmission Lines
  • Fatemeh Mohammadi Shakiba 1,   
  • Milad Shojaee 1,   
  • S. Mohsen Azizi 1, 2,   
  • Mengchu Zhou 1, *

Received: 12 Oct 2022 | Accepted: 08 Nov 2022 | Published: 22 Dec 2022

Abstract

Protection of high voltage transmission lines is one of the crucial problems in the power system engineering. Accurate and timely detection and identification of transmission line short circuit faults can considerably improve and simplify their recovery process and hence save the costs associated with the downtime of a power system. Hence, it is essential that a robust and reliable fault diagnosis system completes its operation within an acceptable time window after fault occurrence in the presence of uncertainties and disturbances in the system. The significant costs of mistakenly detected or undetected faults based on the conventional techniques motivate us to present a robust detection and identification system by using the convolutional neural networks. The robustness of this technique is analyzed for the variations of the phase difference between two connected buses, fault resistance, source inductance fluctuations, fault inception angle, local bus voltage fluctuations, and measurement noises. The time delay analysis is also conducted to indicate that the presented technique is able to detect, identify, and estimate the location of faults before tripping relays and circuit breakers disconnect a faulty region.

Graphical Abstract

References 

  • 1.
    Kumar, A.N.; Sanjay, C.; Chakravarthy, M.; et al, A single-ended directional relaying scheme for double-circuit transmission line using fuzzy expert system. Complex Intell. Syst., 2020, 6: 335−346.
  • 2.
    Raza, A.; Benrabah, A.; Alquthami, T.; et al, A review of fault diagnosing methods in power transmission systems. Appl. Sci., 2020, 10: 1312.
  • 3.
    Yusuff, A.A.; Jimoh, A.A.; Munda, J.L, Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression. Electr. Power Syst. Res., 2014, 110: 73−83.
  • 4.
    Livani, H.; Evrenosoglu, C.Y, A machine learning and wavelet-based fault location method for hybrid transmission lines. IEEE Trans. Smart Grid, 2014, 5: 51−59.
  • 5.
    Khodaparast, J.; Khederzadeh, M, Three-phase fault detection during power swing by transient monitor. IEEE Trans. Power Syst., 2015, 30: 2558−2565.
  • 6.
    Guillen, D.; Paternina, M.R.A.; Ortiz-Bejar, J.; et al, Fault detection and classification in transmission lines based on a PSD index. IET Gener. Trans. Distrib., 2018, 12: 4070−4078.
  • 7.
    Khan, A.Q.; Ullah, Q.; Sarwar, M.; et al, Transmission line fault detection and identification in an interconnected power network using phasor measurement units. IFAC-PapersOnLine, 2018, 51: 1356−1363.
  • 8.
    Ziegler, G. Numerical Distance Protection: Principles and Applications, 4th ed. Wiley: Hoboken, NJ, USA, 2011.
  • 9.
    Asprou, M.; Kyriakides, E.; Albu, M. The effect of PMU measurement chain quality on line parameter calculation. In 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; IEEE: Turin, Italy, 2017; pp. 1–6. doi: 10.1109/I2MTC.2017.7969757
  • 10.
    Jana, S.; De, A, A novel zone division approach for power system fault detection using ANN-based pattern recognition technique. Can. J. Electr. Comput. Eng., 2017, 40: 275−283.
  • 11.
    Li, W.L.; Monti, A.; Ponci, F, Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Trans. Instrum. Meas., 2014, 63: 2651−2665.
  • 12.
    Li, H.F.; Hu, G.Z.; Li, J.Q.; et al., Intelligent fault diagnosis for large-scale rotating machines using binarized deep neural networks and random forests. IEEE Trans. Autom. Sci. Eng., 2022, 19: 1109−1119.
  • 13.
    Ravikumar, B.; Thukaram, D.; Khincha, H.P, Application of support vector machines for fault diagnosis in power transmission system. IET Gener. Trans. Distrib., 2008, 2: 119−130.
  • 14.
    Swetapadma, A.; Yadav, A, A novel decision tree regression-based fault distance estimation scheme for transmission lines. IEEE Trans. Power Delivery, 2017, 32: 234−245.
  • 15.
    Upendar, J.; Gupta, C.P.; Singh, G.K, Statistical decision-tree based fault classification scheme for protection of power transmission lines. Int. J. Electr. Power Energy Syst., 2012, 36: 1−12.
  • 16.
    Chen, Y.Q.; Fink, O.; Sansavini, G, Combined fault location and classification for power transmission lines fault diagnosis with integrated feature extraction. IEEE Trans. Ind. Electron., 2018, 65: 561−569.
  • 17.
    Xie, Y.Y.; Li, C.J.; Lv, Y.J.; et al, Predicting lightning outages of transmission lines using generalized regression neural network. Appl. Soft Comput., 2019, 78: 438−446.
  • 18.
    Thwe, E.P.; Oo, M.M, Fault detection and classification for transmission line protection system using artificial neural network. J. Electr. Electron. Eng., 2016, 4: 89−96.
  • 19.
    Shakiba, F.M. CMOS Based Implementation of Hyperbolic Tangent Activation Function for Artificial Neural Network. Master’s Thesis, Southern Illinois University, Carbondale, USA, 2018.
  • 20.
    Shakiba, F.M.; Zhou, M, Novel analog implementation of a hyperbolic tangent neuron in artificial neural networks. IEEE Trans. Ind. Electron., 2021, 68: 10856−10867.
  • 21.
    Koley, E.; Yadav, A.; Thoke, A.S, A new single-ended artificial neural network-based protection scheme for shunt faults in six-phase transmission line. Int. Trans. Electr. Energy Syst., 2015, 25: 1257−1280.
  • 22.
    Abdel-Aziz, A.M.; Hasaneen, B.M.; Dawood, A.A, Detection and classification of one conductor open faults in parallel transmission line using artificial neural network. Int. J. Sci. Res. Eng. Trends, 2016, 2: 139−146.
  • 23.
    Fahim, S.R.; Sarker, Y.; Sarker, S.K.; et al, Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification. Electr. Power Syst. Res., 2020, 187: 106437.
  • 24.
    Fuada, S.; Shiddieqy, H.A.; Adiono, T.; et al, A high-accuracy of transmission line faults (TLFs) classification based on convolutional neural network. Int. J. Electron. Telecommun., 2020, 66: 655−664.
  • 25.
    Rai, P.; Londhe, N.D.; Raj, R.; et al, Fault classification in power system distribution network integrated with distributed generators using CNN. Electr. Power Syst. Res., 2021, 192: 106914.
  • 26.
    Costa, F.B.; Monti, A.; Lopes, F.V.; et al, Two-terminal traveling-wave-based transmission-line protection. IEEE Trans. Power Delivery, 2017, 32: 1382−1393.
  • 27.
    Hasheminejad, S.; Seifossadat, S.G.; Razaz, M.; et al, Ultra-high-speed protection of transmission lines using traveling wave theory. Electr. Power Syst. Res., 2016, 132: 94−103.
  • 28.
    Yadav, A.; Swetapadma, A, Enhancing the performance of transmission line directional relaying, fault classification and fault location schemes using fuzzy inference system. IET Gener. Trans. Distrib., 2015, 9: 580−591.
  • 29.
    Rahmati, A.; Adhami, R. A fault detection and classification technique based on sequential components. In 2013 IEEE Industry Applications Society Annual Meeting, Lake Buena Vista, FL, USA, 06–11 October 2013; IEEE: Lake Buena Vista, FL, USA, 2013; pp. 1–5. doi: 10.1109/IAS.2013.6682618
  • 30.
    Chakraborty, C.; Verma, V, Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation. IEEE Trans. Ind. Electron., 2015, 62: 1943−1954.
  • 31.
    Ohrstrom, M.; Soder, L, Fast protection of strong power systems with fault current limiters and PLL-aided fault detection. IEEE Trans. Power Delivery, 2011, 26: 1538−1544.
  • 32.
    Pei, X.Y.; Pang, H.; Li, Y.F.; et al, A novel ultra-high-speed traveling-wave protection principle for VSC-based DC grids. IEEE Access, 2019, 7: 119765−119773.
  • 33.
    Cervantes, M.; Kocar, I.; Mahseredjian, J.; et al. A traveling wave based fault location method using unsynchronized current measurements. In 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 04–08 August 2019; IEEE: Atlanta, GA, USA, 2019; pp. 1. doi: 10.1109/PESGM40551.2019.8974132
  • 34.
    Ritzmann, D.; Wright, P.S.; Holderbaum, W.; et al, A method for accurate transmission line impedance parameter estimation. IEEE Trans. Instrum. Meas., 2016, 65: 2204−2213.
  • 35.
    Pegoraro, P.A.; Brady, K.; Castello, P.; et al, Line impedance estimation based on synchrophasor measurements for power distribution systems. IEEE Trans. Instrum. Meas., 2019, 68: 1002−1013.
  • 36.
    Waters, D.H.; Hoffman, J.; Kumosa, M, Monitoring of overhead transmission conductors subjected to static and impact loads using fiber Bragg grating sensors. IEEE Trans. Instrum. Meas., 2019, 68: 595−605.
  • 37.
    Kazim, M.; Khawaja, A.H.; Zabit, U.; et al, Fault detection and localization for overhead 11-kV distribution lines with magnetic measurements. IEEE Trans. Instrum. Meas., 2020, 69: 2028−2038.
  • 38.
    Koley, E.; Kumar, R.; Ghosh, S, Low cost microcontroller based fault detector, classifier, zone identifier and locator for transmission lines using wavelet transform and artificial neural network: A hardware co-simulation approach. Int. J. Electr. Power Energy Syst., 2016, 81: 346−360.
  • 39.
    Gururajapathy, S.S.; Mokhlis, H.; Illias, H.A, Fault location and detection techniques in power distribution systems with distributed generation: A review. Renewable Sustainable Energy Rev., 2017, 74: 949−958.
  • 40.
    Department of energy. 2018. Available online:https://www.energy.gov/ne/articles/department-energy-report-explores-us-advanced-small-modular-reactors-boost-grid(access on 6 October 2022).
  • 41.
    Reddy, M.J.B.; Gopakumar, P.; Mohanta, D.K, A novel transmission line protection using DOST and SVM. Eng. Sci. Technol. Int. J., 2016, 19: 1027−1039.
  • 42.
    Koley, E.; Verma, K.; Ghosh, S, An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only. SpringerPlus, 2015, 4: 551.
  • 43.
    Roy, N.; Bhattacharya, K, Detection, classification, and estimation of fault location on an overhead transmission line using S-transform and neural network. Electr. Power Compon. Syst., 2015, 43: 461−472.
  • 44.
    Ray, P.; Mishra, D.P, Support vector machine based fault classification and location of a long transmission line. Eng. Sci. Technol. Int. J., 2016, 19: 1368−1380.
  • 45.
    Malathi, V.; Marimuthu, N.S.; Baskar, S.; et al, Application of extreme learning machine for series compensated transmission line protection. Eng. Appl. Artif. Intell., 2011, 24: 880−887.
  • 46.
    Chen, K.J.; Hu, J.; He, J.L, Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder. IEEE Trans. Smart Grid, 2018, 9: 1748−1758.
  • 47.
    Lukach, D.; Taylor, R, Transmission line applications of directional ground overcurrent relays. IEEE Power Energy Soc., 2014, 10.
  • 48.
    Kiruthika, M.; Bindu, S, Classification of electrical power system conditions with convolutional neural networks. Eng. Technol. Appl. Sci. Res., 2020, 10: 5759−5768.
  • 49.
    Lei, X.S.; Sui, Z.H, Intelligent fault detection of high voltage line based on the faster R-CNN. Measurement, 2019, 138: 379−385.
  • 50.
    Wang, Y.H.; Li, Q.Q.; Chen, B, Image classification towards transmission line fault detection via learning deep quality-aware fine grained categorization. J. Vis. Commun. Image R., 2019, 64: 102647.
  • 51.
    Dai, Z.Y.; Yi, J.J.; Zhang, Y.J.; et al, Fast and accurate cable detection using CNN. Appl. Intell., 2020, 50: 4688−4707.
  • 52.
    Dong, J.J.; Chen, W.; Xu, C. Transmission line detection using deep convolutional neural network. In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; IEEE: Chongqing, China, 2019; pp. 977–980. doi: 10.1109/ITAIC.2019.8785845
  • 53.
    Moravej, Z.; Pazoki, M.; Khederzadeh, M, New pattern-recognition method for fault analysis in transmission line with UPFC. IEEE Trans. Power Delivery, 2015, 30: 1231−1242.
  • 54.
    Swetapadma, A.; Yadav, A, A novel single-ended fault location scheme for parallel transmission lines using k-nearest neighbor algorithm. Comput. Electr. Eng., 2018, 69: 41−53.
  • 55.
    IEEE guide for identifying and improving voltage quality in power systems. IEEE Std 1250-2011, 2018. Available online: https://ieeexplore.ieee.org/document/8532376(access on 10 October 2022)
  • 56.
    Zhang, W.J.; Wang, J.C.; Lan, F.P.; et al, Dynamic hand gesture recognition based on short-term sampling neural networks. IEEE/CAA J. Autom. Sin., 2021, 8: 110−120.
  • 57.
    Harford, S.; Karim, F.; Darabi, H, Generating adversarial samples on multivariate time series using variational autoencoders. IEEE/CAA J. Autom. Sin., 2021, 8: 1523−1538.
  • 58.
    Luo, X.D.; Wen, X.H.; Zhou, M.C.; et al, Decision-tree-initialized dendritic neuron model for fast and accurate data classification. IEEE Trans. Neural Netw. Learn. Syst., 2022, 33: 4173−4183.
  • 59.
    Huang, Z.H.; Yang, S.Z.; Zhou, M.C.; et al, Feature map distillation of thin nets for low-resolution object recognition. IEEE Trans. Image Process., 2022, 31: 1364−1379.
  • 60.
    Ohata, E.F.; Bezerra, G.M.; das Chagas, J.V.S.; et al, Automatic detection of COVID-19 infection using chest X-ray images through transfer learning. IEEE/CAA J. Autom. Sin., 2021, 8: 239−248.
  • 61.
    Yao, S.Y.; Kang, Q.; Zhou, M.C.; et al, A survey of transfer learning for machinery diagnostics and prognostics. Artif. Intell. Rev., 2022: 1−52.
  • 62.
    Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; et al, Generalized fault diagnosis method of transmission lines using transfer learning technique. Neurocomputing, 2022, 500: 556−566.
  • 63.
    Shakiba, F.M.; Azizi, S.M.; Zhou, M.C., A transfer learning-based method to detect insulator faults of high-voltage transmission lines via aerial images: Distinguishing intact and broken insulator images. IEEE Syst. Man Cybern. Mag., 2022, 8: 15−25.
  • 64.
    Shakiba, F.M.; Azizi, S.M.; Zhou, M.C.; et al. Application of machine learning methods in fault detection and classification of power transmission lines: a survey. Artif. Intell. Rev. 2022, in press. doi:10.1007/s10462-022-10296-0
  • 65.
    Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; et al. Robustness analysis of generalized regression neural network-based fault diagnosis for transmission lines. In 2022 IEEE International Conference on Systems, Man, and Cybernetics, Prague, Czech Republic, 09–12 October 2022; IEEE: Prague, Czech Republic, 2022; pp. 131–136. doi:10.1109/SMC53654.2022.9945342
Share this article:
How to Cite
Shakiba, F. M.; Shojaee, M.; Azizi, S. M.; Zhou, M. Real-Time Sensing and Fault Diagnosis for Transmission Lines. International Journal of Network Dynamics and Intelligence 2022, 1 (1), 36–47. https://doi.org/10.53941/ijndi0101004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.