2504000056
  • Open Access
  • Article
An automatic coke optical texture recognition method based on semantic segmentation model
  • Xialin Wang 1,   
  • Xiu Kan 1, *,   
  • Zhen Zhang 1,   
  • Weizhou Sun 2

Received: 01 Oct 2023 | Accepted: 30 Oct 2024 | Published: 24 Dec 2024

Abstract

To solve the segmentation problem of coke optical texture in coke photomicrograph, a semantic segmentation method is proposed based on the multi-scale feature fusion and attention strategy in this paper. The multi-scale module is com­bined with convolutional block attention module (CBAM) to design a feature extraction strategy, and the Coke-Net network model is established to extract the coke optical texture from coke photomicrographs. The relationship between pixels is fully considered to refine the segmentation edge, and the extraction results with spatial consistency are output to complete the precise segmentation of the coke optical structure. The ablation experiment and contrast experiment are used to demonstrate the effectiveness of the proposed method in coke optical texture extraction.

References 

  • 1.
    Ujisawa, Y.; Nakano, K.; Matsukura, Y.; et al. Subjects for achievement of blast furnace operation with low reducing agent rate. ISIJ Int., 2005, 45: 1379−1385. doi: 10.2355/isijinternational.45.1379
  • 2.
    Mohanty, A.; Chakladar, S.; Mallick, S.; et al. Structural characterization of coking component of an Indian coking coal. Fuel, 2019, 249: 411−417. doi: 10.1016/j.fuel.2019.03.108
  • 3.
    Meng, F.Y.; Gupta, S.; French, D.; et al. Characterization of microstructure and strength of coke particles and their dependence on coal properties. Powder Technol., 2017, 320: 249−256. doi: 10.1016/j.powtec.2017.07.046
  • 4.
    Kasai, A.; Kiguchi, J.; Kamijo, T.; et al. Degradation of coke by molten iron oxide in the cohesive zone and dripping zone of a blast furnace. Tetsu-to-Hagane, 1998, 84: 697−701. doi: 10.2355/tetsutohagane1955.84.10_697
  • 5.
    Natsui, T.; Sunahara, K.; Ujisawa, Y. Effects of gasification and smelting reduction on coke degradation. Tetsu-to-Hagane, 2006, 92: 841−848. doi: 10.2355/tetsutohagane1955.92.12_841
  • 6.
    Hiraki, K.; Hayashizaki, H.; Yamazaki, Y.; et al. The effect of changes in microscopic structures on coke strength in carbonization process. ISIJ Int., 2011, 51: 538−543. doi: 10.2355/isijinternational.51.538
  • 7.
    Donskoi, E.; Poliakov, A.; Mahoney, M.R.; et al. Novel optical image analysis coke characterisation and its application to study of the relationships between coke structure, coke strength and parent coal composition. Fuel, 2017, 208: 281−295. doi: 10.1016/j.fuel.2017.07.021
  • 8.
    Li, Q.Z.; Zhao, C.S.; Chen, X.P.; et al. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. J. Anal. Appl. Pyrol., 2009, 85: 521−528. doi: 10.1016/j.jaap.2008.10.018
  • 9.
    Koyuncu, C.F.; Arslan, S.; Durmaz, I.; et al. Smart markers for watershed-based cell segmentation. PLoS One, 2012, 7: e48664. doi: 10.1371/journal.pone.0048664
  • 10.
    Zhang, C.C.; Xiao, X.Y.; Li, X.M.; et al. White blood cell segmentation by color-space-based K-Means clustering. Sensors, 2014, 14: 16128−16147. doi: 10.3390/s140916128
  • 11.
    Eshraghian, J.K.; Baek, S.; Levi, T.; et al. Nonlinear retinal response modeling for future neuromorphic instrumentation. IEEE Instrum. Meas. Mag., 2020, 23: 21−29. doi: 10.1109/MIM.2020.8979519
  • 12.
    Deng, N.D.; Wang, X.; Wang, F.; et al. The application of threshold segmentation algorithm in loess microstructure image analysis. In Proceedings of 2012 National Conference on Information Technology and Computer Science, Lanzhou, China, November 2012; Atlantis Press, 2012; pp. 531–533. doi: 10.2991/citcs.2012.206
  • 13.
    Qin, Y.G.; Luo, Z.Q.; Dai, Z.; et al. Three-dimensional structural imaging of rock components and methods for component segmentation and extraction. JOM, 2020, 72: 2198−2206. doi: 10.1007/s11837-020-04133-4
  • 14.
    Andrew, M. Correction to: A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images. Comput. Geosci., 2018, 22: 1513. doi: 10.1007/s10596-018-9780-2
  • 15.
    Wang, P.Z.; Mao, X.Q.; Mao, X.F.; et al. Coke photomicrograph segmentation based on an improved mean shift method. In Proceedings of 2009 Asia-Pacific Conference on Information Processing, Shenzhen, China, 1819 July 2009; IEEE: New York, 2009; pp. 27–30. doi: 10.1109/APCIP.2009.143
  • 16.
    Poliakov, A.; Donskoi, E. Separation of touching particles in optical image analysis of iron ores and its effect on textural and liberation characterization. Eur. J. Mineral., 2019, 31: 485−505. doi: 10.1127/ejm/2019/0031-2844
  • 17.
    Liu, H.G.; Zhang, L.H.; Zhou, S.Y.; et al. Research on the method of coke optical tissue segmentation based on adaptive clustering. Int. J. Photoenergy, 2021, 2021: 4378823. doi: 10.1155/2021/4378823
  • 18.
    Zh ou, F.; Yue, G.X.; Jiang, J.G. A novel intelligent technique for recognition of coke optical texture. J. Softw., 2011, 6: 1476−1483
  • 19.
    Mao, K.J.; Lu, W.; Wu, K.X.; et al. Bone age assessment method based on fine-grained image classification using multiple regions of interest. Syst. Sci. Control Eng., 2022, 10: 15−23. doi: 10.1080/21642583.2021.2018669
  • 20.
    Li, X.; Li, M.L.; Yan, P.F.; et al. Deep learning attention mechanism in medical image analysis: Basics and beyonds. Int. J. Netw. Dyn. Intell., 2023, 2: 93−116. doi: 10.53941/ijndi0201006
  • 21.
    Bai, H.Y.; Mao, J.G.; Chan, S.H.G. A survey on deep learning-based single image crowd counting: Network design, loss function and supervisory signal. Neurocomputing, 2022, 508: 1−18. doi: 10.1016/j.neucom.2022.08.037
  • 22.
    Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39: 640−651. doi: 10.1109/TPAMI.2016.2572683
  • 23.
    Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 59 October 2015; Springer: Berlin/Heidelberg, 2015; pp. 234–241. doi: 10.1007/978-3-319-24574-4_28
  • 24.
    Chu, Z.Q.; Tian, T.; Feng, R.Y.; et al. Sea-Land segmentation with Res-UNet and fully connected CRF. In Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019 - 02 August 2019; IEEE: New York, 2019; pp. 3840–3843. doi: 10.1109/IGARSS.2019.8900625
  • 25.
    He, K.M.; Zhang, X.Y.; Ren, S.Q.; et al. Deep residual learning for image recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vegas, NV, USA, 27–30 June 2016; IEEE: New York, 2016; pp. 770–778. doi: 10.1109/CVPR.2016.90
  • 26.
    Oktay, O.; Schlemper, J.; Le Folgoc, L.; et al. Attention U-Net: Learning where to look for the pancreas. arXiv: 1804.03999, 2018. doi: 10.48550/arXiv.1804.03999
  • 27.
    Xu, Y.J.; Mao, Z.D.; Chen, Z.N.; et al. Context propagation embedding network for weakly supervised semantic segmentation. Multimed. Tools Appl., 2020, 79: 33925. doi: 10.1007/s11042-020-08787-9
  • 28.
    China National Coal Industry Association. Method of preparing coal samples for the coal petrographic analysis: GB/T 16773-2008. Standards Press of China, 2008 (in Chinese)
  • 29.
    Laraqui, A.; Saaidi, A.; Satori, K. MSIP: Multi-scale image pre-processing method applied in image mosaic. Mult. Tools Appl., 2018, 77: 7517−7537. doi: 10.1007/s11042-017-4659-0
  • 30.
    Fan, J.H.; Bocus, M.J.; Hosking, B.; et al. Multi-scale feature fusion: Learning better semantic segmentation for road pothole detection. In Proceedings of the 2021 IEEE International Conference on Autonomous Systems (ICAS), Montreal, QC, Canada, 11–13 August 2021; IEEE: New York, 2021. doi: 10.1109/ICAS49788.2021.9551165
  • 31.
    Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; 2015
  • 32.
    Zhou, Z.W.; Siddiquee, M.M.R; Tajbakhsh, N.; et al. UNet++: A nested U-Net architecture for medical image segmentation. In Proceedings of the 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 20 September 2018; Springer: Berlin/Heidelberg, 2018, pp. 3–11. doi: 10.1007/978-3-030-00889-5_1
  • 33.
    Chen, J.N.; Lu, Y.Y.; Yu, Q.H.; et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv: 2102.04306, 2021. doi: 10.48550/arXiv.2102.04306
Share this article:
How to Cite
Wang, X.; Kan, X.; Zhang, Z.; Sun, W. An automatic coke optical texture recognition method based on semantic segmentation model. International Journal of Network Dynamics and Intelligence 2024, 3 (4), 100022. https://doi.org/10.53941/ijndi.2024.100022.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.