2504000060
  • Open Access
  • Highlights
Linear State Estimation for Multi-rate NCSs With Multi-channel Observation Delays and Unknown Markov Packet Losses
  • Zhenglu Sun,   
  • Chunyan Han *

Received: 19 Oct 2023 | Accepted: 27 Nov 2024 | Published: 25 Mar 2025

Abstract

This paper is concerned with the linear minimum mean square error estimation (LMMSE) for the multi-rate sampling systems with multi-channel observation delays and unknown Markovian packet losses. The original system is firstly transformed into a single-rate jumping parameter system with multi-channel and delay-free observations by employing the lifting technique and introducing a set of reorganized observations and Markov chains. Then, the single-rate system is converted into a general linear system without delays by defining a new group of extended states. Based on the innovation analysis method, a liner minimum mean square error estimator is developed, and the estimator gain is obtained in terms of generalized Riccati difference equations based on a set of coupled Lyapunov equations. Therefore, the original state estimation problem is solved via the jumping parameter property. Finally, the convergence of the Riccati equation is analyzed and a stationary filter is obtained. The novelty of this paper lies in the introduction of the reorganized observations and multi-state Markov chains.

References 

  • 1.
    Wang, Z.Q.; Liu, C.L. Wind turbine condition monitoring based on a novel multivariate state estimation technique. Measurement, 2021, 168: 108388. doi: 10.1016/j.measurement.2020.108388
  • 2.
    Erkec, T.Y.; Hajiyev, C. Fault-tolerant state estimation methods of cluster satellites. Adv. Space Res., 2023, 71: 3868−3882. doi: 10.1016/j.asr.2022.09.059
  • 3.
    Feng, F.; Zhang, P.; Zhou, Y.F.; et al. Quantum microgrid state estimation. Electr. Power Syst. Res., 2022, 212: 108386. doi: 10.1016/j.jpgr.2022.108386
  • 4.
    Rashed, M.; Gondal, I.; Kamruzzaman, J.; et al. State estimation within IED based smart grid using Kalman estimates. Electronics, 2021, 10: 1783. doi: 10.3390/electronics10151783
  • 5.
    Olariu, S.; El-Tawab, S. Introduction to the special issue on real-time traffic state estimation. IEEE Trans. Intell. Transp. Syst., 2023, 24: 1356−1358. doi: 10.1109/TITS.2022.3229480
  • 6.
    Barz, T.; Seliger, D.; Marx, K.; et al. State and state of charge estimation for a latent heat storage. Control Eng. Pract., 2018, 72: 151−166. doi: 10.1016/j.conengprac.2017.11.006
  • 7.
    Liu, L.; Yang, A.L.; Zhou, W.J.; et al. Modelling and estimation for uncertain systems with transmission delays, packet dropouts, and out-of-order packets. Complexity, 2018, 2018: 7531547. doi: 10.1155/2018/7531547
  • 8.
    Lin, H.; Su, H.Y.; Shi, P.; et al. Optimal estimation and control for lossy network: Stability, convergence, and performance. IEEE Trans. Autom. Control, 2017, 62: 4564−4579. doi: 10.1109/TAC.2017.2672729
  • 9.
    Ma, H.; Hu, W.; Tang, G.Y. Networked predictive vibration control for offshore platforms with random time delays, packet dropouts and disordering. J. Sound Vib., 2019, 441: 187−203. doi: 10.1016/j.jsv.2018.02.035
  • 10.
    Léchappé, V.; Rouquet, S.; González, A.; et al. Delay estimation and predictive control of uncertain systems with input delay: Application to a DC motor. IEEE Trans. Ind. Electron., 2016, 63: 5849−5857. doi: 10.1109/TIE.2016.2527692
  • 11.
    Ahmed, S.; Wang, H.P.; Tian, Y. Adaptive high-order terminal sliding mode control based on time delay estimation for the robotic manipulators with backlash hysteresis. IEEE Trans. Syst. Man Cybern. Syst., 2021, 51: 1128−1137. doi: 10.1109/TSMC.2019.2895588
  • 12.
    Sheng, L.; Wang, Y.C.; Gao, M.; et al. Finite-time H∞ filtering for nonlinear stochastic systems with multiplicative noises via carleman linearization technique. IEEE Trans. Aerosp. Electron. Syst., 2023, 59: 1774−1786. doi: 10.1109/TAES.2022.3205878
  • 13.
    Liu, S.; Wang, Z.D.; Wang, L.C.; et al. Finite-horizon H∞ filtering via a high-rate network with the FlexRay protocol. IEEE Trans. Autom. Control, 2023, 68: 3596−3603. doi: 10.1109/TAC.2022.3190791
  • 14.
    Kuti, J.; Rudas, I.J.; Gao, H.J.; et al. Computationally relaxed unscented Kalman filter. IEEE Trans. Cybern., 2023, 53: 1557−1565. doi: 10.1109/TCYB.2022.3181211
  • 15.
    Chen, L.; Zhou, S.Y.; Wang, W.D. MmWave beam tracking with spatial information based on extended Kalman filter. IEEE Wirel. Commun. Lett., 2023, 12: 615−619. doi: 10.1109/LWC.2023.3236622
  • 16.
    Zou, L.; Wang, Z.D.; Geng, H.; et al. Set-membership filtering subject to impulsive measurement outliers: A recursive algorithm. IEEE/CAA J. Autom. Sin., 2021, 8: 377−388. doi: 10.1109/JAS.2021.1003826
  • 17.
    Gao, Y.T.; Ma, L.F.; Zhang, M.J.; et al. Distributed set-membership filtering for nonlinear time-varying systems with dynamic coding–decoding communication protocol. IEEE Syst. J., 2022, 16: 2958−2967. doi: 10.1109/JSYST.2021.3063357
  • 18.
    Liu, Q.Y.; Wang, Z.D. Moving-horizon estimation for linear dynamic networks with binary encoding schemes. IEEE Trans. Autom. Control, 2021, 66: 1763−1770. doi: 10.1109/TAC.2020.2996579
  • 19.
    Zou, L.; Wang, Z.D.; Han, Q.L.; et al. Moving horizon estimation of networked nonlinear systems with random access protocol. IEEE Trans. Syst. Man Cybern. Syst., 2021, 51: 2937−2948. doi: 10.1109/TSMC.2019.2918002
  • 20.
    Tsividis, Y. Externally linear, time-invariant systems and their application to companding signal processors. IEEE Trans. Circuits Syst. II: Analog Digital Signal Proc., 1997, 44: 65−85. doi: 10.1109/82.554425
  • 21.
    Njima, C.B.; Mabrouk, W.B.; Messaoud, H. Finite time stabilization of linear systems by state feedback: Application to mixing tank system. In 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, 06–08 May 2013; IEEE: New York, 2013; pp. 393–398. doi: 10.1109/CoDIT.2013.6689577
  • 22.
    Vu, V.P.; Do, T.D. Disturbance observer synthesis for linear systems: Application for DC motor. In 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019, IEEE: New York, 2019; pp. 433–436. doi: 10.1109/ICSSE.2019.8823127
  • 23.
    Priemer, R.; Vacroux, A. Estimation in linear discrete systems with multiple time delays. IEEE Trans. Autom. Control, 1969, 14: 384−387. doi: 10.1109/TAC.1969.1099195
  • 24.
    Chisci, L.; Mosca, E. Polynomial equations for the linear MMSE state estimation. IEEE Trans. Autom. Control, 1992, 37: 623−626. doi: 10.1109/9.135499
  • 25.
    Han, C.Y.; Li, C.C.; He, F.; et al. Receding horizon estimation for linear discrete-time systems with multi-channel observation delays. IEEE/CAA J. Autom. Sin., 2019, 6: 478−484. doi: 10.1109/JAS.2018.7511261
  • 26.
    Liu, M.Q.; Qi, D.L.; Zhang, S.L.; et al. Optimal H∞ fusion filters for a class of discrete-time intelligent systems with time delays and missing measurement. Neurocomputing, 2011, 74: 3741−3752. doi: 10.1016/j.neucom.2011.06.016
  • 27.
    Li, Z.J.; Sun, M.X.; Duan, Q.W.; et al. Robust state estimation for uncertain discrete linear systems with delayed measurements. Mathematics, 2022, 10: 1365. doi: 10.3390/math10091365
  • 28.
    Li, F.; Zhou, J.; Wu, D.Z. Optimal filtering for systems with finite-step autocorrelated noises and multiple packet dropouts. Aerosp. Sci. Technol., 2013, 24: 255−263. doi: 10.1016/j.ast.2011.11.013
  • 29.
    Xu, J.P.; Gu, G.X.; Gupta, V.; et al. Optimal stationary state estimation over multiple Markovian packet drop channels. Automatica, 2021, 128: 109561. doi: 10.1016/j.automatica.2021.109561
  • 30.
    Costa, O.L.V.; Marques, R.P.; Fragoso, M.D. Discrete-Time Markov Jump Linear Systems; Springer: London, 2005. doi: 10.1007/b138575
  • 31.
    Han, C.Y.; Zhang, H.S.; Fu, M.Y. Optimal filtering for networked systems with Markovian communication delays. Automatica, 2013, 49: 3097−3104. doi: 10.1016/j.automatica.2013.07.018
  • 32.
    Han, C.Y.; Wang, W. Optimal filter for MJL system with delayed modes and observations. IET Control Theory Appl., 2018, 12: 68−77. doi: 10.1049/iet-cta.2017.0692
  • 33.
    Han, C.Y.; Wang, W. Linear state estimation for Markov jump linear system with multi-channel observation delays and packet dropouts. Int. J. Syst. Sci., 2019, 50: 163−177. doi: 10.1080/00207721.2018.1551969
  • 34.
    Sun, S.L.; Wang, G.H. Modeling and estimation for networked systems with multiple random transmission delays and packet losses. Syst. Control Lett., 2014, 73: 6−16. doi: 10.1016/j.sysconle.2014.07.005
  • 35.
    Sun, S.L. Optimal linear filters for discrete-time systems with randomly delayed and lost measurements with/without time stamps. IEEE Trans. Autom. Control, 2013, 58: 1551−1556. doi: 10.1109/TAC.2012.2229812
  • 36.
    Geng, H.; Wang, Z.D.; Liang, Y.; et al. State estimation for asynchronous sensor systems with Markov jumps and multiplicative noises. Inf. Sci., 2017, 417: 1−19. doi: 10.1016/j.ins.2017.07.001
  • 37.
    Wei, Y.; Sun, S.L. Recursive distributed fusion estimation for multi-sensor systems with missing measurements, multiple random transmission delays and packet losses. Signal Proc., 2023, 204: 108829. doi: 10.1016/j.sigpro.2022.108829
  • 38.
    Benisi, N.Z.; Aminian, M.; Javadi, B. Blockchain-based decentralized storage networks: A survey. J. Netw. Comput. Appli., 2020, 162: 102656. doi: 10.1016/j.jnca.2020.102656
  • 39.
    Pu, C.L.; Cui, W.; Wu, J.X.; et al. Bufferless transmission in complex networks. IEEE Trans. Circuits Syst. II: Express Briefs, 2018, 65: 893−897. doi: 10.1109/TCSII.2017.2775622
  • 40.
    Ge, M.F.; Guan, Z.H.; Hu, B.; et al. Distributed controller–estimator for target tracking of networked robotic systems under sampled interaction. Automatica, 2016, 69: 410−417. doi: 10.1016/j.automatica.2016.03.008
  • 41.
    Cuenca, Á.; Ojha, U.; Salt, J.; et al. A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System. Inf. Sci., 2015, 321: 31−47. doi: 10.1016/j.ins.2015.05.035
  • 42.
    Lin, H.L.; Sun, S.L. An overview of multirate multisensor systems: Modelling and estimation. Inf. Fusion, 2019, 52: 335−343. doi: 10.1016/j.inffus.2019.05.002
  • 43.
    Andrisani, D.; Gau, C.F. Estimation using a multirate filter. IEEE Trans. Autom. Control, 1987, 32: 653−656. doi: 10.1109/TAC.1987.1104672
  • 44.
    Shen, Y.X.; Wang, Z.D.; Dong, H.L.; et al. Multi-sensor multi-rate fusion estimation for networked systems: Advances and perspectives. Inf. Fusion, 2022, 82: 19−27. doi: 10.1016/j.inffus.2021.12.005
  • 45.
    Liang, Y.; Chen, T.W.; Pan, Q. Multi-rate optimal state estimation. Int. J. Control, 2009, 82: 2059−2076. doi: 10.1080/00207170902906132
  • 46.
    Ravi, A.; Narasimhan, S.; Kaisare, N.S. Sampled Output augmentation method for handling measurement delays in multirate Kalman filter. Chem. Eng. Sci., 2020, 224: 115763. doi: 10.1016/j.ces.2020.115763
  • 47.
    Lin, H.L.; Sun, S.L. State Estimation for a class of non-uniform sampling systems with missing measurements. Sensors, 2016, 16: 1155. doi: 10.3390/s16081155
  • 48.
    Callier, F.M.; Desoer, C.A. Linear System Theory; Springer: New York, 1991. doi: 10.1007/978-1-4612-0957-7
Share this article:
How to Cite
Sun, Z.; Han, C. Linear State Estimation for Multi-rate NCSs With Multi-channel Observation Delays and Unknown Markov Packet Losses. International Journal of Network Dynamics and Intelligence 2025, 4 (1), 100005. https://doi.org/10.53941/ijndi.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.